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From scalars to tensors

A Xs v

Matrix
object in Kn1×n2

set of n2 elements in Kn1

linear operator from Kn2 to Kn1

Tensor
object in Kn1×···×nd

set of (ni1 × nik ) elements in
Knj1 ×···×njℓ

multilinear operator from Knj1 ×···×njℓ

to Kni1 ×···×nik

with k + ℓ = d
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Where and why tensors?

↔

Examples of tensor data
Color images, video, . . .
Text mining: term × document × author
(Social) networks: score × object × referee × criterion
Event Related Potential (ERP): subject × time × frequency × channel × . . .
Face recognition: people × pose × illumination × angle

Tensor advantages
better representation of intricate phenomena
compression by factorization techniques
uniqueness for some decomposition
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SVD and EVD: numerical aspects
SVD:

EVD:

X = U · S · VT

X = U
V

gap between singular values

Y = E ·D · E−1

Y = E E−1D

does not always exist! (alg multiplicity > geom multiplicity)
gap between eigenvalues
linear independence eigenvectors
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Matrix Singular Value Decomposition

X = U
V

R

R
σ1 . . .

σR

n2

n1

R

n1

n2

R

Orthonormal basis
for column space

Orthonormal basis
for row space

(Numerical) rank revealing
Best rank-r approximation ≺ truncation SVD
Dominant subspace generated by first part of U, V

X = U · S · VT =
R∑

i=1
σiui ⊗ vi
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Best low rank approximation of matrix

Matrix

min
rank(X̂)⩽R

∥X− X̂∥2 ⇐⇒ max ∥ÛT · A · V̂∥2 (Û, V̂ orthogonal)

∥X− X̂∥2min =
min(I1,I2)∑
r=R+1

σ2
r

X = U
V

8



Overview
From matrix to tensors

Matrix factorization

Tensor preliminaries

Tucker’s decomposition

Optical character recognition

Tensor-Train

Orthogonalization schemes

Canonical Polyadic decomposition

Blind Source Separation

Challanges

Conclusion

9



Unfolding and contraction
Let X be a (n1 × · · · × nd) tensor

X

. . .
n1

n2
n3

→ · · ·

n3

n1

n2
X(1)

Definition: the k-th mode matricization X(k) is a (nk × n1 · · · nk−1nk+1 · · · nd) matrix,
obtained stacking the vectors

xik = vec(X (·, . . . , ik , . . . , ·)).

10



Matrix-tensor product
Let X be a (n1 × · · · × nd) tensor. If G is a (nk ×mk) matrix
Definition: the k-th mode matrix-tensor product

Y = X ×k G

a (n1 × · · · ×mk × · · · nd) such that

Y(i1, . . . , jk , . . . , id) =
nk∑

ik=1
X (i1, . . . , ik , . . . , id)G(ik , jk)

Computational: a straightforward way of getting Y the matrix-tensor product is
computing

Y = GT X(k)

and then tensorizing Y into Y.
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Tucker’s decomposition
Definition:

X = C ×1 U1 ×2 U2 ×3 · · · ×d Ud = (U1, . . . , Ud)S
with C a (R1 × · · · × Rd) tensor and Ui a (ni × Ri) orthogonal matrix.
Remark:

the core tensor C is is all-orthogonal, ordered and not diagonal;
Ui is said i-th factor matrix.
the memory cost is

O(Rd + NR)
where R = max Ri , N = max ni .

X =
C

U1

U2

U3

[Tucker 1964; De Lathauwer, De Moor, et al. 2000a] 13



Multilinear rank of a tensor

The Tucker’s decomposition factorizes a tensor A using its8 multilinear rank
Definition: the multilinear rank rank⊞(X ) = (R1, . . . , Rd) is such that

Ri = rank(X(i)) for i = 1, . . . , d .

Surprising fact: each component of rank⊞ can be different (new possibilities)
Property:

Ri ⩽
∏
j ̸=i

Ri
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Compute Tucker’s decomposition

X

. . .
n1

n2
n3

→ · · ·

n3

n1

n2
X(1)

Mode-1 vector space (columns)/sing. values:
SVD: X(1) = U1Σ1V1

T

Mode-2 vector space (rows)/sing. values:
SVD: X(2) = U2Σ2V2

T

Mode-3 vector space/sing. values:
SVD: X(3) = U3Σ3V3

T

Core tensor:
C = X ×1 U1

T ×2 U2
T ×3 U3

T

This algorithm is also called High-Order Singular Value Decomposition
15



Truncated HOSVD
What if (R1, . . . , Rd) is not the exact multilinear rank?

Truncation error:

∥X − X̂T∥2 ⩽
n1∑

i1=R1+1
σ2

i1 +
n2∑

i2=R2+1
σ2

i2 +
n3∑

i3=R3+1
σ2

i3

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

2

⩽

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

2

Suboptimality: ∥X − X̂T∥
2
⩽ d ∥X − X̂∥2min (order d)

Alternative: compute the multilinear approximation as
X̂ = min

rank⊞(Y)⩽(R1,R2,R3)
∥X − Y∥2
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Algorithms for low multilinear rank approximation

HO orthogonal iteration: [Kroonenberg 1983; De Lathauwer, De Moor, et al. 2000b]

Optimization on manifolds:
Newton [Eldén and Savas 2009; Ishteva, De Lathauwer, et al. 2009]

Quasi-Newton [Savas and Lim 2010]

Trust region [Ishteva, Absil, et al. 2010]

Conjugate gradient [Ishteva, De Lathauwer, et al. 2009]

Krylov methods: [Savas and Eld’en 2013; Goreinov, I. V. Oseledets, et al. 2012]

Initialization: truncated HOSVD, random inits
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Approximation vs truncation

Optimal approximation:
relatively expensive
not always necessary

Truncation:
Truncation may suffice: multilinear rank can be increased, if higher accuracy is
desired
Precise values of R1, . . . , RN not important, if size subspace does not matter
Discard small multilinear singular values
How to choose R1, . . . , RN?

for each mode separately (cf. PCA)
all modes together: check bound on error; compute norm residual; heuristic
procedures
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Numerical pros and cons

Well-posed
(Approximate) computation via matrix SVD
Error bounds
Curse not broken
Numerically reliable but limited to modest order

X =
C

U1

U2

U3

Order 3 = n3 → O
(
3nR + R3)

Order d = nd → O
(
nR + Rd

)
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Applications of low multilinear rank approximation
Dimensionality reduction:

acts like a compression and reduced storage
denoising
following computation in compressed format and then re-expansion

Subspaces:
finds principal directions in each mode separately)
distinguishes between information subspace and noise ones

X =

W

U
VC

Â B̂
Ĉ

20
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Optical character recognition
topic in machine learning
recognizing and converting handwritten or printed text into electronic document
widely used, e.g., Oletko koskaan kokeillut Google-Translate?

Studying example: creating a classifier, that estimates the probability a handwritten
digit is a specific digit.
Workflow:

1. produce a training set, i.e., a set of handwritten digits labeled;
2. reduce the data dimensions;
3. finds features to discriminate the data;
4. choose a classification algorithm, e.g., k-nearest neighbors, SVM, NN....
5. learn the classifier parameters from the traing data
6. estimate its capacity on the test data

22



MNIST dataset
28× 28 grayscale images of handwritten digits
60′000 training images
10′000 test images
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Input data-set compression
Let Aℓ be a tensor of size (28× 28× nℓ) collecting all the handwritten images with tag
ℓ = 0, . . . , 9. The compression step consists in

computing the HOSVD of Aℓ at multilinear rank (8, 8, 40)
define fℓk =

(
(U1, U2, I)S

)
(·, k) is the k-th element of the feature basis for

k = 1, . . . , 40
pass

{
{f0k}, . . . , {f9k}

}
k to 3-nearest neighbors classifier

24



Classification results
The confusion matrix after this procedure gets

25
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Tensor Train or Matrix Product States

X1
X2

X3 X4 X5

R1 R2 R3 R4

n1

n2

n3
n4 n5

Let X a tensor of order d and dimensions (N1 × · · · × Nd), then its TT-representation
is given by d TT-cores s.t.

X1 a (N1, R1) matrix
Xi is a (Ri−1 × Ni × Ri) tensor
Xd is a (Rd−1 × Nd) matrix

i.e., a train of matrix - third-order tensors - matrix.

The (i1, . . . , id) element of X is

X (i1, . . . , id) =
d∑

i=1

Ri∑
ri =1

X(i , r1)X1(i1, r2, i2) · · ·Xd(id−1, id).

27



TT-decomposition idea

X (i1, . . . , id) =
d∑

i=1

Ri∑
ri =1

X(i , r1)X1(i1, r2, i2) · · ·Xd(id−1, id).

{1, 2, 3, 4, 5}
0

{1} {2, 3, 4, 5}
1

{2} {3, 4, 5}
2

{3} {4, 5}
3

{4} {5}

(n1 × n2n3n4n5)

(n1 × R1)(R1 × n2n3n4n5)
(R1n2 × n3n4n5)

(R1n2 × R2)(R2 × n3n4n5)
(R2n3 × n4n5)

(R2n3 × R3) (R3 × n4n5)
(R3n4 × n5)

(R3n4 × R4) (R4 × n5)
28



TT-SVD [I. Oseledets 2011]

Algorithm 1: XTT = TT-SVD(X , ε)
Input: X order d tensor, ε ∈ R+

1 δ = (ε/
√

d − 1)∥X∥
2 set C equal to X and R0 = 1
3 for i = 1, . . . , d − 1 do
4 reshape C as a matrix C of size (niRi−1 ×m) with m =

(∏
j ̸=i ni

)
/(niRi−1)

5 compute Ĉi = ÛiΣ̂i V̂T
i the SVD of C truncated at rank Ri s.t. ∥C− Ĉi∥ ≤ δ

6 reshape Ûi as a tensor Xi of dimension (Ri−1 × ni × Ri)
7 set C = Σ̂i V̂T

i
8 set Xd = C

Output:
{
X1,X2, . . . ,Xd−1, Xd

}

29



TT-properties

graph structure below;
total number of entries: nd ↔ number
of variables: O

(
dnR2)

, i.e., curse
broken by means of QR/SVD
truncation error bound

{1, 2, 3, 4, 5}
0

{1} {2, 3, 4, 5}
1

{2} {3, 4, 5}
2

{3} {4, 5}
3

{4} {5}
∥X − X̂TT, trunc∥

2
F ⩽ (N − 1) min

rankTT(X̂ )⩽(R1,R2,...,RN−1)
∥X − X̂∥2F

Remark: the TT-ranks increase with linear combinations of tensors in TT-format or
contractions.

30



A different tree? Hierarchical Tucker [Hackbusch 2012; Grasedyck 2010]

TT

{1, 2, 3, 4, 5}
0

{1} {2, 3, 4, 5}
1

{2} {3, 4, 5}
2

{3} {4, 5}
3

{4} {5}

hT

{1, 2, 3, 4, 5}
0

{1, 2}
1a

{1} {2}

{3, 4, 5}
1b

{3} {4, 5}
2

{4} {5}

31



Application: scientific computing

The problem{
L(u) = f in Ω
u = f0 in ∂Ω

for Ω ⊆ Rn1×···×nd .
(i, j)

0 1

1

∆x

∆y

AX = B
where A : Rn1×···×nd → Rn1×···×nd is a multilinear operator and B ∈ Rn1×···×nd a
tensor.
For large scale-simulations we have to take into account

memory costs O(Nd)
computational model
numerical method

32



Tensors and scientific computing
Scientific computing: discretization of functions in many variables: “curse of
dimensionality”

n n2 n3

Exponential increase of entries: nd

Computation: in terms of parameterized approximation

33
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Maths vs computer science
Mathematical world

π = 3.1415926535897932384626433...

x = 0.1 and y = 0.2, then x + y = 0.3

Computer world
>>> π = 3.141592653589793

>>> x = 0.1 and y = 0.2, then x+y = 0.30000000000000004
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Computational model
Denoting by u the unit roundoff of the working precision

Standard IEEE model [Higham 2002]

fl(x) = x(1 + ξ) [storage perturbation]

fl(x op y) = (x op y)(1 + ε) [computational perturbation]

with |ξ| ≤ u, |ε| ≤ u and op ∈ {+,−,×,÷}.

Example
Assuming to work in floating point 64, with u64 = 10−16

π = 3.141592653589793 = π(1 + ξ) with |ξ| ≤ u64

x = 0.1 and y = 0.2, then

x + y = 0.30000000000000004 = (0.2 + 0.1)(1 + ε)
with |ε| ≤ u64

36
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New tensor framework
What happens when objects are compressed through a tensor techniques?
Assumptions when using both u the computational precision and δ a storage one

use TT-formalism, so that storage cost is linear in d
compress objects at precision δ

perform operation with computational precision u

new computational framework

flδ(X opY) = δ-storage
(
fl(X opY)

)
δ-storage(Z) = Z s.t. ||Z − Z||

||Z||
≤ δ

with fl is the classical floating point computational function dependent on u.
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Numerical linear algebra methods

Iterative solver
Generalized Minimal RESidual
(GMRES)

Orthogonalization kernels
Classical and Modified Gram-Schmidt
(CGS, MGS)
Gram approach
Householder transformation

38



Orthogonalization schemes
Let Qk = [q1, . . . , qk ] be the orthogonal basis produced by an orthogonalization kernel,
then the Loss Of Orthogonality is

||Ik −Q⊤
k Qk ||.

It measures the quality in terms of orthogonality of the computed basis. It is linked
with the linearly dependency of the input vectors Ak = [a1, . . . , ak ], estimated through
κ(Ak).

Matrix

Source Algorithm
∣∣∣∣∣∣Ik −Q⊤

k Qk
∣∣∣∣∣∣

[Stathopoulos and Wu 2002] Gram O(uκ2(Ak))
[L. Giraud, Langou, et al. 2005] CGS O(uκ2(Ak))
[Björck 1967] MGS O(uκ(Ak))
[L. Giraud, Langou, et al. 2005] CGS2 O(u)
[L. Giraud, Langou, et al. 2005] MGS2 O(u)
[Wilkinson 1965] Householder O(u)
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Classical and Modified Gram-Schmidt

Algorithm 2: Q, R = TT-CGS(A, δ)
Input: A = [A1, . . . ,Am], δ ∈ R+

1 for i = 1, . . . , m do
2 P = Ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨Ai , Qj⟩
5 P = P − R(i , j)Qj
6 P = TT-rounding(P, δ)
7 R(i , i) = ||P||
8 Qi = P/R(i , i)

Output: Q = {Q1, . . . ,Qm}, R

Algorithm 3: Q, R = TT-MGS(A, δ)
Input: A = {A1, . . . ,Am}, δ ∈ R+

1 for i = 1, . . . , m do
2 P = Ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨P, Qj⟩
5 P = P − R(i , j)Qj
6 P = TT-rounding(P, δ)
7 R(i , i) = ||P||
8 Qi = P/R(i , i)

Output: Q = {Q1, . . . ,Qm}, R

They readily write in TT-format.
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Gram approach
Let A = [a1, . . . , am], then we look for A = QR with QTQ = Im
compute the Gram matrix

ATA = (RTQT)QR = RTR

this is (almost) the Cholesky factorization of A⊤A that can be written as

ATA = RTR = LL⊤

with the Cholesky factor L = RT and then Q gets

Q = AR−1 = A(LT)−1

41



Gram approach

Let A = [a1, . . . , am], then we look for A = QR with QTQ = Im
compute the Gram matrix

ATA = (RTQT)QR = RTR

this is (almost) the Cholesky factorization of A⊤A that can be written as

ATA = RTR = LL⊤

with the Cholesky factor L = RT and then Q gets

Q = AR−1 = A(LT)−1

Algorithm 4: Q, R = TT-Gram(A, δ)
Input: A = {A1, . . . ,Am}, δ ∈ R+

1 G be the Gram matrix from A
2 L = cholesky(G)
3 Q = {Q1, . . . ,Qd} from A and (LT)−1

4 for i = 1, . . . , m do
5 Qi = δ-storage(Qi)

Output: Q = {Q1, . . . ,Qm}, R

In TT-format the following modifications
occur

G(i , j) = ⟨Ai , Aj⟩
LT inverse is explicitly computed
Qi is constructed as a linear
combination of A elements
TT-rounding is used to compress at
precision δ
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Householder transformation
Given a vector x ∈ Rn and a direction y ∈ Rn, the Householder reflector H reflects x
along y, i.e.,

Hx = ||x||y with ||y|| = 1.

Thanks to its properties, H writes as

H = In −
2
||u||2 u⊗ u with u = (x− ||x||y).

The practical implementation of the Householder transformation kernel uses the
components of the input vectors.

Remark
The Householder algorithm does not readily apply to tensor in TT-formats because of
the compressed nature of this format.
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TT-orthogonalization
Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1

||Xk+1||
Xk+1

Figure: Loss of orthogonality for m = 20 TT-vectors of
order d = 3 and mode size n = 15, rounding precision
δ = 10−5
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Loss of orthogonality: matrix vs tensor [Coulaud, Luc Giraud, et al. 2022]

Matrix, theoretical TT-format, conjecture

Algorithm ||Ik −QT
kQk || ||Ik −QT

kQk ||

Gram O(uκ2(Ak)) O(δκ2(Ak))
CGS O(uκ2(Ak)) O(δκ2(Ak))
MGS O(uκ(Ak)) O(δκ(Ak))
CGS2 O(u) O(δ)
MGS2 O(u) O(δ)
Householder O(u) O(δ)
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Canonical polyadic decomposition [F. L. Hitchcock 1927; Richard A. Harshman 1970;
Carroll and J.-J. Chang 1970]

Definition: decomposition in minimal number of rank-1 terms [R. A. Harshman 1970;
Carrol and J. J. Chang 1970]

X =

c1

a1

b1 + · · ·+

cR

aR

bR

Surprising fact: unique under mild conditions on number of terms and differences
between terms

Additional constraints such as orthogonality, triangularity, ... are not required, but may
be imposed. 46



Uniqueness

Trivial indeterminacies: permutation and scaling

X =

c1

a1

b1
+ · · ·+

cR

aR

bR

Scaling: ar ← ar · αr br ← br · βr cr ← cr · α−1
r · β−1

r

47



Rank of a tensor
The rank R of a matrix X is minimal number of rank-1 matrices that yield X in a
linear combination.

G =
a1

b1 + · · ·+
aR

bR

The rank R of an Nth-order tensor X is the minimal number of rank-1 tensors
that yield X in a linear combination.

X =

c1

a1

b1 + · · ·+

cR

aR

bR

[F. Hitchcock 1927]
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Rank and dimension
Remark 1: (n × n × . . .× n): rank can > n (new possibilities)
Remark 2: expected rank > n
Remark 3: is NP-hard [Håstad 1990]

X =

c1

a1

b1 + · · ·+

cR

aR

bR

Partial explanation: number of free tensor parameters: nd

number of parameters in expansion: dnR

Rank and multilinear rank: R ⩾ max(R1, R2, . . . , RN)
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Tucker vs CPD

exact Tucker’s decomposition
matrix SVD

low multilinear rank approximation
numerically reliable

X =

exact CPD
matrix EVD

low rank approximation
numerically less reliable

X = + · · ·+

50



CPD / low rank approximation: numerical pros and cons

Possibly ill-posed
Possibly ill-conditioned
Curse broken
Powerful tool but not always numerically reliable

X =

c1

a1

b1
+ · · ·+

cR

aR

bR

Order 3 = n3 → O (3nR)
Order d = nd → O (dnR)
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Algorithm basics: CPD using ALS

Step k, substep 1 : min
Ak

1
2

∣∣∣∣∣∣X(1) − Ak(Ck−1⊙Bk−1)T
∣∣∣∣∣∣2

F

Step k, substep 2 : min
Bk

1
2

∣∣∣∣∣∣X(2) − Bk(Ck−1⊙Ak)T
∣∣∣∣∣∣2

F

Step k, substep 3 : min
Ck

1
2

∣∣∣∣∣∣X(3) − Ck(Bk ⊙Ak)T
∣∣∣∣∣∣2

F

X =

c1

a1

b1
+ · · ·+

cR

aR

bR
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Pencil-based computation: numerical implication

CPD: X =
c1

a1

b1 +

c2

a2

b2 + · · ·+

cR

aR

bR

(G)EVD: X (:, :, 1)X (:, :, 2)−1 =
[
a1 . . . aR

] c11/c21 . . .
c1R/c2R

 [
a1 . . . aR

]−1

Algebraically equivalent but computational differences
init optimization algorithm
quantization noise → condition number [Beltrán, Breiding, et al. 2019]

CPD structure is collapsed into matrix pencil
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Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2


 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X M ST=

Known Unknown Unknown
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Factor Analysis and Blind Source Separation
Decompose a data matrix in rank-1 terms that can be interpreted
E.g. statistics, telecommunication, biomedical applications, chemometrics, data
analysis, . . .

X = MST

X =
m1

s1 +
m2

s2 + · · ·+
mR

sR

M: mixing matrix S: source signals
Matrix decomposition in rank-1 terms is not unique!

X = (MG)(G−1ST) = M̃S̃T
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Additional hypothesis [Domanov and De Lathauwer 2016]

It is assumed that the columns of S are values of the rational function

t : x→
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}Kk=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
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CPD reformulation
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · ·+

cR

aR

bR

then X(3) = (a1 ⊗k b1)⊗ cT
1 + . . . + (aR ⊗k bR)⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · ·+

aR ⊗k bR

cR

(ar ⊗k br ) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

algebraic variety
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Algebraic algorithm: high view
Let X be a (N1 × N2 × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br )⊗ cT

r =
(
A⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X using algebraic geometry properties;
2. compute

(
A⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR ] to recover A and B;

4. compute C by solving (A⊙ B)C = X.
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Using algebraic geometry I
e is a column of C−1 if and only if XT e is equal to a column of (A⊙ B)

XT e = (xT
1 e, . . . , xT

N e) = (z1, . . . , zN) ∈ V

Pk(xT
1 e, . . . , xT

N e) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N )(e⊗ · · · ⊗ e) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N ) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.
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Using algebraic geometry II
e is a column of C−1 if and only if XT e is equal to a column of A⊙ B

P⊗
k (xT

1 , . . . , xT
N )(e⊗ · · · ⊗ e) = 0 for k = 1, . . . , K

Qvec(e⊗d) =

P⊗
1 (xT

1 , . . . , xT
N )

...
P⊗

K (xT
1 , . . . , xT

N )

 vec(e⊗ · · · ⊗ e) = 0

The columns of C−1 belong to the intersection of Q kernel and vec(SymN
R ) the

subspace of vectorized order N symmetric tensors, i.e.,
e ∈ null(Q) ∩ vec(Symd

R).
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Algebraic algorithm outline

X C
(
A⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C−1 by a CPD of {e⊗d

1 , . . . , e⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R )

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A⊙ B) as C−1X transposed;

3. factorize each column of
(
A⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A⊙ B)T C = X.
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Challenges

efficiently construct Q and its kernel [Domanov and De Lathauwer 2013]
estimate the dimension of the intersection with Symd+h

R
efficiently construct a basis for Eh

compute the CPD of {e⊗(h+d)
1 , . . . , e⊗(h+d)

d }
estimate the quality of the algorithm and its robustness
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Wrap up

Tensor methods used in

data analysis problem as compression methods
by the Tucker’s decomposition

scientific computing as new policy for computational methods
by the Tensor-Train decomposition

signal processing
by the Canonical Polyadic Decomposition
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Research

General theme: tensor tools for mathematical engineering:
algebraic foundations
numerical algorithms and software
signal processing/data analysis/machine learning/modelling/. . . : concepts
specific applications: array processing, telecom, biomedical applications, materials
science, chemical science, . . .
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Thank you for the attention!
Questions?
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