
Potential and applications of tensor-based algorithms

Martina Iannacito

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
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noframenumbering

From scalars to tensors

↔

Matrix
object in Kn1×n2

set of n2 elements in Kn1

linear operator from Kn2 to Kn1

Tensor
object in Kn1×···×nd

set of (ni1 · · · nik ) elements in Knj1 ×···×njℓ

multilinear operator from Knj1 ×···×njℓ to
Kni1 ×···×nik with k + ℓ = d
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Where and why tensors?

↔

Examples of tensor data
Color images, video, . . .
Text mining: term × document × author
(Social) networks: score × object × referee × criterion
Ecological data: species × time × area × altitude × . . .
Face recognition: people × pose × illumination × angle

Tensor advantages
better representation of intricate phenomena
compression by factorization techniques
uniqueness for some decomposition
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Tensor basics

Basic definitions

Let A be an (n1 × n2 × n3) tensor

n1

n2

n3

{1, 2, 3} are the modes of the tensors
nk is the size of the k-th mode
d = 3 is the tensor order

Curse of dimensionality
The number of entries is O(nd) with n = max ni
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Tensor basics

Fibers and slices

The tensor fibers are vectors extracted from the tensor fixing all indexes except one

A(·, i2, i3) A(i1, ·, i3) A(i1, i2, ·)

The tensor slices are matrices extracted from the tensor fixing all indexes except two

A(i1, ·, ·) A(·, i2, ·) A(·, ·, i3)
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Tensor basics

Unfolding

Let X be a 3-order tensor of size (n1 × n2 × n3)

X

. . .
n1

n2
n3

→ · · ·

n3

n1

n2
X(1)

The 1-st mode matricization X(1) is a (n1 × n2n3) matrix, obtained stacking the vectors

xi1 = vec(X (i1, ·, ·)).
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Tensor basics

Products I

The tensor product of two vectors, a and b, of length m and n results in a size (m × n)
matrix C = a ⊗ b s.t.

C(i , j) = a(i)b(j).
The Kronecker productof two vectors, a and b, of length m and n results in a length (mn)
vector c = a ⊗k b such that

c(h) = a(i)b(j)
where h = (j − 1)m + i .

Remark
The vectorization of a ⊗ b is equal to a ⊗k b.

The Kathri-Rao product of two matrices A of size (m1 × R) and B of size (m2 × R) results
in a size (m1m2 × R) matrix C = A ⊙ B such that

C(·, j) = aj ⊗k bj .
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Tensor basics

Products II

The 1st mode matrix-tensor product of an (n1 × n2 × n3) tensor and a size (n1 × m1)
matrix G results in an (m1 × n2 × n3) tensor Y = X ×1 G s.t.

Y(j1, i2, i3) =
n1∑

i1=1
X (i1, i2, i3)G(i1, j1).

The tensor contraction along the first mode of two tensors, A and B of size (n1 × n2 × n3)
and size (n1 × m2 × m3) results in a size (n2 × n3 × m2 × m3) tensor C = A ·1 B s.t.

C(i2, i3, j2, j3) =
n1∑

i1=1
A(i1, i2, i3)B(i1, j2, j3).

Remark
When more modes are contracted, the symbol is omitted!
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Tensor basics

Ranks

The multilinear rank of an (n1 × n2 × n3) tensor X is (r1, r2, r3) where rh = rank(X(h)).

X

. . .
n1

n2
n3

→ · · ·

n3

n1

n2 X(1)

The (n1 × n2 × n3) tensor X is a rank-1 tensor if it can be expressed as X = a ⊗ b ⊗ c.

X =
c1

a1
b1 + · · · +

cR

aR
bR

The rank of an (n1 × n2 × n3) tensor X is R the minimal number of rank-1 tensors that yield
X in a linear combination
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Tucker model for biodiversity

Master’s supervisors

Figure: Prof. A. Bernardi, University of Trento Figure: Prof. D. Rocchini, University of Bologna

algebraic geometry
algorithms for tensor decomposition

plant ecology
algorithms to estimate biodiveristy
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Tucker model for biodiversity

Background

Figure: from [Bedini 2017].

Over a time series of Europe spectral images,
get two images from two spectral bands
(RED and NIR);
compute the normalized difference
vegetation index per pixel, i.e.,

NDVI(i , j) = NIR(i , j) − RED(i , j)
NIR(i , j) + RED(i , j)

compute a biodiversity index over the
resulting NDVI image

What happens if the NDVI image is computed from the NIR and RED spectral images
stored in a tensor and compressed?
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Tucker model for biodiversity

Tucker’s model [Tucker 1966; De Lathauwer et al. 2000]

A =
C

U1

U2

U3

If A is an (n1 × n2 × n3) tensor of multilinear rank (r1, r2, r3), its Tucker decomposition is
A = C ×1 U1 ×2 U2 ×3 U3where

the core tensor is C of size (r1 × r2 × r3);
the i-th factor matrix is Ui an (ni × ri) orthogonal matrix.

Remark
The memory requirement is O(r3 + nr) where r = max ri , n = max ni .
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Tucker model for biodiversity

Experimental set-up

organize the NIR and RED images into a tensor

compress the images by approximating the tensor at different multilinear ranks

construct the NDVI image from the compressed images

estimate the biodiversity from the obtained image by moving window

perform statistical analysis on the results

Moving window 12 / 44



Tucker model for biodiversity

Rényi index result [Bernardi et al. 2021]

Rényi index
Uses only pixel value frequencies

Compression at multilinear rank (i , i , 3) with
i ∈ {10, 50, 100, 500, 1000}

memory used ranges between 0.19% and
22%;
average error per pixel ranges between
13% and 5%.
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Tucker model for biodiversity

Rao index result [Bernardi et al. 2021]

Rao index
Uses both pixel values and their frequencies

Compression at multilinear rank (i , i , 3) with i ∈ {10, 50, 100, 500, 1000}
memory used ranges between 0.19% and 22%;
average error per pixel ranges between 63% and 19%.
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TT-format for NLA

Ph.D. supervisors

Figure: Prof. O. Coulaud, Inria Bordeaux Figure: Prof. L. Giraud, Inria Bordeaux

tensor methods
high-dimensional simulations

numerical linear algebra
finite precision arithmetic
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TT-format for NLA

Context

The problem{
L(u) = f in Ω
u = f0 in ∂Ω

for Ω ⊆ Rn1×···×nd .
(i, j)

0 1

1

∆x

∆y

AX = B

where A : Rn1×···×nd → Rn1×···×nd is a multilinear operator and B ∈ Rn1×···×nd a tensor.
For large scale-simulations we have to take into account

memory costs O(nd)
computational model
numerical linear algebra techniques
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TT-format for NLA

Tensor Train or Matrix Product States [Oseledets 2011]

Let X a tensor of order d and size (n1 × · · · × nd)

X1 X2
X3 X4 X5

r1 r2 r3 r4

i1
i2

i3 i4 i5

Figure: train of matrix - third-order tensors - matrix
then its TT-representation is X = X1X2 · · · Xd−1Xd s.t.

the k-th TT-core is Xk an (rk−1 × nk × rk) tensor
the TT-rank is (1, r1, . . . , rd−1, 1)
X1 and Xd are two matrices

Remark
The memory cost is O(dr2n) where r = max ri and n = max ni .
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TT-format for NLA

New variable accuracy approach

Which properties are maintained when objects are compressed by TT-format?

Assumptions
compress tensors at accuracy δ with TT-format
store matrices and vectors at accuracy u from standard IEEE model
perform operation at accuracy u from standard IEEE model

new ‘mixed’-precision framework

flδ(X op Y) = δ-storage
(
fl(X op Y)

)
δ-storage(Z) = Z s.t. ||Z − Z||

||Z||
≤ δ

with fl is the classical floating point computational function dependent on u.
18 / 44



TT-format for NLA

Numerical linear algebra methods

Iterative solver
Generalized Minimal RESidual (GMRES)

Orthogonalization kernels
Classical and Modified Gram-Schmidt
(CGS, MGS)
Gram approach
Householder transformation
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TT-format for NLA

Orthogonalization schemes

Let Qk = [q1, . . . , qk ] be the orthogonal basis produced by an orthogonalization kernel, then
the Loss Of Orthogonality is

||Ik − Q⊤
k Qk ||.

It measures the quality in terms of orthogonality of the computed basis. It is linked with the
linearly dependency of the input vectors Ak = [a1, . . . , ak ], estimated through κ(Ak).

Matrix

Source Algorithm ||Ik − QT
kQk ||

[Stathopoulos et al. 2002] Gram O(uκ2(Ak))
[L. Giraud et al. 2005] CGS O(uκ2(Ak))
[Björck 1967] MGS O(uκ(Ak))
[L. Giraud et al. 2005] CGS2 O(u)
[L. Giraud et al. 2005] MGS2 O(u)
[Wilkinson 1965] Householder O(u)
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TT-format for NLA

Classical and Modified Gram-Schmidt

Algorithm 1: Q, R = TT-CGS(A, δ)
Input: A = [A1, . . . , Am], δ ∈ R+

1 for i = 1, . . . , m do
2 P = Ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨Ai , Qj⟩
5 P = P − R(i , j)Qj
6 P = TT-rounding(P, δ)
7 R(i , i) = ||P||
8 Qi = P/R(i , i)

Output: Q = {Q1, . . . , Qm}, R

Algorithm 2: Q, R = TT-MGS(A, δ)
Input: A = {A1, . . . , Am}, δ ∈ R+

1 for i = 1, . . . , m do
2 P = Ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨P, Qj⟩
5 P = P − R(i , j)Qj
6 P = TT-rounding(P, δ)
7 R(i , i) = ||P||
8 Qi = P/R(i , i)

Output: Q = {Q1, . . . , Qm}, R

They readily write in TT-format.
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TT-format for NLA

Gram approach

Let A = [a1, . . . , am], then we look for A = QR with QTQ = Im
compute the Gram matrix

ATA = (RTQT)QR = RTR

this is (almost) the Cholesky factorization of ATA that can be written as

ATA = RTR = LL⊤

with the Cholesky factor L = RT and then Q gets

Q = AR−1 = A(LT)−1
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TT-format for NLA

Gram approach

Let A = [a1, . . . , am], then we look for A = QR with QTQ = Im
compute the Gram matrix

ATA = (RTQT)QR = RTR

this is (almost) the Cholesky factorization of ATA that can be written as

ATA = RTR = LL⊤

with the Cholesky factor L = RT and then Q gets

Q = AR−1 = A(LT)−1

Algorithm 3: Q, R = TT-Gram(A, δ)
Input: A = {A1, . . . , Am}, δ ∈ R+

1 G be the Gram matrix from A
2 L = cholesky(G)
3 Q = {Q1, . . . , Qd} from A and (LT)−1

4 for i = 1, . . . , m do
5 Qi = δ-storage(Qi)

Output: Q = {Q1, . . . , Qm}, R

In TT-format the following modifications occur

G(i , j) = ⟨Ai , Aj⟩
LT inverse is explicitly computed
Qi is constructed as a linear combination
of A elements
TT-rounding is used to compress at
precision δ
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TT-format for NLA

Householder transformation

Given a vector x ∈ Rn and a direction y ∈ Rn, the Householder reflector H reflects x along y,
i.e.,

Hx = ||x||y with ||y|| = 1.

Thanks to its properties, H writes as

H = In − 2
||u||2

u ⊗ u with u = (x − ||x||y).

The practical implementation of the Householder transformation kernel uses the components
of the input vectors.

Remark
The Householder algorithm does not readily apply to tensor in TT-formats because of the
compressed nature of this format.
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TT-format for NLA

TT-orthogonalization: numeric [Coulaud, Luc Giraud, et al. 2022b]

Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1
||Xk+1||

Xk+1

Loss of orthogonality for
{
Ak
}20

k=1 TT-vectors of order 3, mode size 15, rounding accuracy
δ = 10−5 compared with condition number of Ak = [vec(A1), . . . , vec(Ak)]
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TT-format for NLA

TT-orthogonalization: numeric [Coulaud, Luc Giraud, et al. 2022b]

Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1
||Xk+1||

Xk+1

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

Gram approach
CGS
κ2(Ak)

O(δκ2(Ak))

Loss of orthogonality for
{
Ak
}20

k=1 TT-vectors of order 3, mode size 15, rounding accuracy
δ = 10−5 compared with condition number of Ak = [vec(A1), . . . , vec(Ak)]
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TT-format for NLA

TT-orthogonalization: numeric [Coulaud, Luc Giraud, et al. 2022b]

Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1
||Xk+1||

Xk+1

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

MGS
κ(Ak)

O(δκ(Ak))

Loss of orthogonality for
{
Ak
}20

k=1 TT-vectors of order 3, mode size 15, rounding accuracy
δ = 10−5 compared with condition number of Ak = [vec(A1), . . . , vec(Ak)]
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TT-format for NLA

TT-orthogonalization: numeric [Coulaud, Luc Giraud, et al. 2022b]

Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1
||Xk+1||

Xk+1

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

CGS2
MGS2
Householder transformation

O(δ)

Loss of orthogonality for
{
Ak
}20

k=1 TT-vectors of order 3, mode size 15, rounding accuracy
δ = 10−5 compared with condition number of Ak = [vec(A1), . . . , vec(Ak)]
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TT-format for NLA

TT-orthogonalization: numeric [Coulaud, Luc Giraud, et al. 2022b]

Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1
||Xk+1||

Xk+1

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

Gram approach O(δκ2(Ak))
CGS O(δκ2(Ak))
MGS O(δκ(Ak))
CGS2 O(δ)
MGS2 O(δ)
Householder transformation O(δ)

Loss of orthogonality for
{
Ak
}20

k=1 TT-vectors of order 3, mode size 15, rounding accuracy
δ = 10−5 compared with condition number of Ak = [vec(A1), . . . , vec(Ak)]
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TT-format for NLA

TT-orthogonalization: theory (work in progress)

Let a, b, x and q ∈ Rn, while δ ∈ (0, 1) a precision, u a unit roundoff and γn = nu
1−nu .

Mixed inner product
In the mixed-precision system, the inner product between a and q is such that

|fl(aTq̃) − aTq| ≤ ||a|| ||q|| (γn + δ + δγn)

where ||q − q̃|| ≤ δ ||q||.

Mixed projection
Let P̃ = In − ãb̃T be a normwise perturbed projector. If y = P̃x = x − ã(b̃Tx) (exact
arithmetic) and y = fl(P̃x) (finite arithmetic), then

||y − ȳ|| ≤ (γm + ηℓ + γmηℓ)
(
1 + ||a|| ||b||

)
||x|| .

where ηℓ = ℓδ for ℓ ∈ N.
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CPD for signal processing

Postdoctoral project

Blind Source Separation (BSS)
algebraic algorithm for Canonical Polyadic
Decomposition
improve the algorithm efficiency

Figure: Prof. L. De Lathauwer, KU
Leuven

26 / 44



CPD for signal processing

Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2


 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X M ST=

Known Unknown Unknown
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CPD for signal processing

Factor Analysis and Blind Source Separation

Decompose a data matrix in rank-1 terms that can be interpreted
E.g. statistics, telecommunication, biomedical applications, chemometrics, data analysis,
. . .

X = MST

X =
m1

s1 +
m2

s2 + · · · +
mR

sR

M: mixing matrix S: source signals
Matrix decomposition in rank-1 terms is not unique!

X = (MG)(G−1ST) = M̃S̃T

What about tensor decomposition techniques?
28 / 44



CPD for signal processing

Canonical Polyadic Decomposition [Hitchcock 1927; Harshman 1970; Carroll et al. 1970]

X =

c1

a1

b1 + · · · +

cR

aR

bR

If A is a (n1 × n2 × n3) tensor of rank R, its CPD decomposition is

A =
R∑

r=1
ar ⊗ br ⊗ cr

where ar ∈ Kn1 , br ∈ Kn2 and cr ∈ Kn3 with i = 1, . . . , R. Its properties are
unique under mild assumptions
memory cost O(dnR)
NP-hard problem
algorithms affected by numerical instabilities 29 / 44



CPD for signal processing

CPD reformulation

if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br ) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

algebraic variety
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CPD for signal processing

Algebraic algorithm: high view

Let X be a (n1 × n2 × n3) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br ) ⊗ cT

r =
[
a1 ⊗k b1 · · · aR ⊗k bR

]
CT.

If X =
(
X(3))T, then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1 compute C−1 from X using algebraic geometry properties;
2 decompose at rank 1 each column of (C−1X)T =

[
a1 ⊗k b1 · · · aR ⊗k bR

]
;

3 compute C by solving (A ⊙ B)CT = X.
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CPD for signal processing

Retrieving C - I

The vector e is a column of C−1 if and only if eX is equal to aℓ ⊗k bℓ.
We try to characterize the vector e, defining the matrix-valued function

W(e)(i1, i2) =
n3∑

i3=1
e(i3)X (i1, i2, i3) = X ×3 e

e is a column of C−1 if and only if W(e) is equal to a aℓ ⊗ bℓ

rank(W(e)) = 1

The determinant of each (2 × 2) minor of W(e) is equal to 0
32 / 44



CPD for signal processing

Retrieving C - II

The determinant of each (2 × 2) minor of W(e) is equal to 0

There exists a system of C2
I C2

J homogeneous degree 2 polynomial equations in e

Ph1h2(e) =
n3∑

k1,k2=1
k1≤k2

Q(h1, h2, k1, k2) e(k1)e(k2)

searching elements in the kernel of Q(1,2) which can be mapped to symmetric rank-1 matrices.
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CPD for signal processing

Retrieving C - III

The number of solution to the homogeneous degree 2 polynomial system can be predicted
using the algebraic geometry theorem [Conca et al. 1994] as

max
{

R,

(
n1 − 1

2

)(
n2 − 1

2

)}

if n3 = r = (n1 − 1)(n2 − 1)
if R solutions are found, then

organize them into a (n3 × n3 × R) tensor and compute its CPD to retrieve C−1;
perform a column-wise SVD of (XC−1) to retreive A and B
solve for C the equation (A ⊙ B)CT = X

if more than R solutions are found, we need to discard some solutions

Embedding procedure
34 / 44



CPD for signal processing

Embedding procedure

If the kernel of Q(1,2) has more than R elements which can be mapped to rank-1 symmetric
matrices, then we can define new polynomial equations as

(e(k1))d1 · · · (e(kℓ))dℓPh1h2(e) = 0
where ℓ is the number of times we need to repeat the embedding.

Search for the elements in the kernel of (IRℓ ⊗k Q(1,2)) which can be mapped to symmetric
rank-1 tensors of order ℓ + 2.

From [Conca et al. 1994], the value ℓ is known a priori as the minimum integer such that(
n1 − 1
2 + ℓ

)(
n2 − 1
2 + ℓ

)
≤ R if n3 = R = (n1 − 1)(n2 − 1)
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CPD for signal processing

Numerical drawbacks

the construction of Q(1,2) has complexity C2
n1C

2
n2C

2
R+1, how can we improve it? Could we

benefit from the matrix Q(1,2) structure?

the matrix IRℓ ⊗ Q(1,2) has dimension (RℓC2
n1C

2
n2 × C2

R+1Rℓ), thus its SVD becomes
quickly expensive

the auxiliary tensor formed by the R symmetric order ℓ + 2 tensors has to be decomposed
by CPD. How to compute this CPD reliably and effectively?

the results of [Conca et al. 1994] holds under the assumption of generically independence
of the system polynomials, how can we guarantee it from the input tensor X ?

could the number of symmetric elements in the kernel of IRℓ ⊗ Q(1,2) be predicted a priori
if R ̸= (n1 − 1)(n2 − 1)?

could we assess the robustness to numerical errors of this algorithm?
36 / 44



Conclusion

Table of Contents

1 Introduction

2 Tensor basics

3 Tucker model for biodiversity

4 TT-format for NLA

5 CPD for signal processing

6 Conclusion



Conclusion

Wrap up

Tensor methods used in

data analysis problem as compression methods
e.g., the Tucker’s decomposition

scientific computing as new policy for computational methods
e.g., the Tensor-Train decomposition

signal processing
e.g., the Canonical Polyadic Decomposition
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Conclusion

Other projects

rasterdiv an R package to compute biodiversity indexes [Rocchini et al. 2021]

Generalized Minimal RESidual in variable accuracy [Agullo et al. 2022]

Inexact TT-GMRES features for parametric operators [Coulaud, Luc Giraud, et al. 2022a]

High Order Correspondance Analysis applied to ecological datasets [Coulaud, Franc, et al.
2021]

Bind Inferference Suppression algorithm

2 4 6 8 10 12 14
iteration

10 10

10 8

10 6

10 4

10 2

100

AM, b

= 1e 03
= 1e 03, inexact
= 1e 05
= 1e 05, inexact
= 1e 08
= 1e 08, inexact

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Principal component 1

0.5

0.0

0.5

1.0
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Bouee13
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summer

benthic

Jacquets

winter

Teychan

spring

mode 1, OTU
mode 2, location
mode 3, water column position
mode 4, season
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Conclusion

Thank you for the attention!
Questions? Advice?
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Easter egg

Happy birthday Daniele!

spontaneously from J. C. F. Gauss.AI
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Background on GMRES I [Saad et al. 1986]

To solve Ax = b with initial guess x0 = 0, at the k-th iteration GMRES minimizes the norm of
residual

||rk || = min
x∈Kk(A,b)

||Ax − b||

in the Krylov space Kk(A, b) = span{b, Ab, . . . , Ak−1b}

Practically, let Vk = [v1, . . . , vk ] such that

Kk(A, b) = span{v1, . . . , vk}

thanks to the Arnoldi relation

AVk = Vk+1Hk with VT
k+1Vk+1 = Ik+1

Commonly Householder or Modified Gram-Schmidt algorithms are used to construct Vk
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Background on GMRES II [Saad et al. 1986]

Thanks to the Arnoldi relation, in exact arithmetic the residual can be written as

||rk || = min
x∈Kk(A,b)

||Ax − b|| = min
y

∣∣∣∣∣∣βe1 − Hky
∣∣∣∣∣∣ = ||̃rk ||.

Remark
In finite arithmetic, the exact residual rk and the LS-residual r̃k differ!

If the smaller minimization problem is solved by yk , the updated iterative solution is

xk = Vkyk



GMRES property [Wilkinson 1963]

Given the linear system Ax = b and a working precision u, then

(A, b)
(A, b)

(Ã, b̃)

x

xk

u

exact

computed

exact

backward
error

forward
error

data
space

solution
space

GMRES is backward stable, i.e.,

ηA,b(xk) = ||Axk − b||
||A||||xk || + ||b||

∼ O(u)



TT-GMRES results [Dolgov 2013; Coulaud, Luc Giraud, et al. 2022a]

Convection-Diffusion problem{
−∆U +V · ∇U = 0
U{y=1} = 1

in Ω = [−1, 1]3

TT-GMRES modifications
Arnoldi basis compressed at accuracy δ

Iterative solution compressed at accuracy δ
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TT-GMRES: inexact variant

TT-GMRES
constant rounding accuracy δ

iterative solution rounded at precision δ

inexact TT-GMRES
increasing rounding accuracy δ/ ||̃r||
iterative solution at IEEE precision
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K2(Vk) > 4/3

Convergence history vs LOO
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