
From blind source separation to tensor decomposition:
an algebraic algorithm

Martina Iannacito

joint work with Ignat Domanov and Lieven De Lathauwer

Numa seminar
Leuven, Belgium, October 26, 2023

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

2

Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X M ST=

Known Unknown Unknown

3

Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X M ST=

Known Unknown Unknown

3

Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X

M ST=

Known

Unknown Unknown

3

Blind Source Separation problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

X M ST=

Known Unknown Unknown

3

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

4

Constraints for uniqueness

Let X be a matrix

Definition: a deterministic condition of X is a particular matrix property which is
always true.

Definition: a generic condition of X depends on a parameter z ∈ Ω and holds almost
everywhere, i.e., if Σ is the set of z values for which the condition doesn’t hold, then
µ(Σ) = 0 where µ is a measure absolute continuous w.r.t. the Lebesgue one.

5

Deterministic conditions
Statistical independence → Independent Component Analysis;

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization;

X = M ST
+ +

Sparsity → Sparse Component Analysis;

X = M ST
Max0

...

[Comon and Jutten 2009]
6

Deterministic conditions
Statistical independence → Independent Component Analysis;

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization;

X = M ST
+ +

Sparsity → Sparse Component Analysis;

X = M ST
Max0

...

[Comon and Jutten 2009]
6

Deterministic conditions
Statistical independence → Independent Component Analysis;

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization;

X = M ST
+ +

Sparsity → Sparse Component Analysis;

X = M ST
Max0

...

[Comon and Jutten 2009]
6

Deterministic conditions
Statistical independence → Independent Component Analysis;

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization;

X = M ST
+ +

Sparsity → Sparse Component Analysis;

X = M ST
Max0

...

[Comon and Jutten 2009]
6

General case

X M ST=

X M G G−1 ST=

X M1 ST
1

Uniqueness isn’t guaranteed!

7

General case

X M ST=

X M G G−1 ST=

X M1 ST
1

Uniqueness isn’t guaranteed!

7

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

8

Constraints for uniqueness

Let X be a matrix

Definition: a deterministic condition of X is a particular matrix property which is
always true.

Definition: a generic condition of X depends on a parameter z ∈ Ω and holds almost
everywhere, i.e., if Σ is the set of z values for which the condition doesn’t hold, then
µ(Σ) = 0 where µ is a measure absolute continuous w.r.t. the Lebesgue one.

9

Problem statement

X =
m1

s1
+ · · · +

mR

sR

X =
R∑

r=1
mr (z) ⊗ sr (z)

where
z ∈ Ω a subset of Rn;

mr (z) are linearly independent;
each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ;
each sr (ξr) has the structure

s(ξr) =
[

p1
q1

◦ f(ξr) . . . pN
qN

◦ f(ξr)
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.

10

Problem statement

X =
m1

s1
+ · · · +

mR

sR

X =
R∑

r=1
mr (z) ⊗ sr (z)

where
z ∈ Ω a subset of Rn;
mr (z) are linearly independent;

each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ;
each sr (ξr) has the structure

s(ξr) =
[

p1
q1

◦ f(ξr) . . . pN
qN

◦ f(ξr)
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.

10

Problem statement

X =
m1

s1
+ · · · +

mR

sR

X =
R∑

r=1
mr (z) ⊗ sr (z) =

R∑
r=1

mr (z) ⊗ sr (ξr)

where
z ∈ Ω a subset of Rn;
mr (z) are linearly independent;
each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ;

each sr (ξr) has the structure

s(ξr) =
[

p1
q1

◦ f(ξr) . . . pN
qN

◦ f(ξr)
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.

10

Problem statement

X =
m1

s1
+ · · · +

mR

sR

X =
R∑

r=1
mr (z) ⊗ sr (ξr) =

R∑
r=1

mr (z) ⊗ s(ξr)

where
z ∈ Ω a subset of Rn;
mr (z) are linearly independent;
each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ;
each sr (ξr) has the structure

s(ξr) =
[

p1
q1

◦ f(ξr) . . . pN
qN

◦ f(ξr)
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.

10

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;

the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2 f is the identity

11

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;
the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2 f is the identity

11

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;
the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq]

ℓ = p + q + 2 f is the identity

11

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;
the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2

f is the identity

11

Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2

 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;
the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2 f is the identity
11

A cookbook recipe for generic uniqueness [Domanov and De Lathauwer 2016]

Let t(x) =
[

p1
q1

(x) . . . pN
qN

(x)
]T

for x ∈ Θ = {x ∈ Cℓ : q1(x) · · · qN(x) ̸= 0}, if

1. rankM(z) = R for a generic choice of z;
2. each fh is the ratio of two analytical functions on Cℓ;
3. there exists ξ0 ∈ Cℓ s.t. detJ(f, ξ0) ̸= 0;
4. the dimension of the span of t(x) for x ∈ Θ is at least N̂;
5. rankJ(t, x) > ℓ̂ for a generic choice of z;
6. R ≤ N̂ − ℓ̂;

then

X =
R∑

r=1
mr (z) ⊗ s(ξr)

is generically unique.

12

Remarks for BSS

It is assumed that the columns of S are values of the rational function

t : x →
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}K

k=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
13

Remarks for BSS

It is assumed that the columns of S are values of the rational function

t : x →
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}K

k=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
13

Remarks for BSS

It is assumed that the columns of S are values of the rational function

t : x →
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}K

k=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
13

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

14

Link with the CPD
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

15

Link with the CPD
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

15

Link with the CPD
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

15

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

16

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;

2. compute
(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17

Equivalent condition I
c is a column of C−1 if and only if XT c is equal to a column of (A ⊙ B)

XT c = (xT
1 c, . . . , xT

N c) = (z1, . . . , zN) ∈ V

Pk(xT
1 c, . . . , xT

N c) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.

18

Equivalent condition I
c is a column of C−1 if and only if XT c is equal to a column of (A ⊙ B)

XT c = (xT
1 c, . . . , xT

N c) = (z1, . . . , zN) ∈ V

Pk(xT
1 c, . . . , xT

N c) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.

18

Equivalent condition I
c is a column of C−1 if and only if XT c is equal to a column of (A ⊙ B)

XT c = (xT
1 c, . . . , xT

N c) = (z1, . . . , zN) ∈ V

Pk(xT
1 c, . . . , xT

N c) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.

18

Equivalent condition I
c is a column of C−1 if and only if XT c is equal to a column of (A ⊙ B)

XT c = (xT
1 c, . . . , xT

N c) = (z1, . . . , zN) ∈ V

Pk(xT
1 c, . . . , xT

N c) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.

18

Equivalent condition II
c is a column of C−1 if and only if XT c is equal to a column of A ⊙ B

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

Qvec(c⊗d) =

P⊗
1 (xT

1 , . . . , xT
N)

...
P⊗

K (xT
1 , . . . , xT

N)

 vec(c ⊗ · · · ⊗ c) = 0

The columns of C−1 belong to the intersection of Q kernel and vec(SymN
R) the

subspace of vectorized order N symmetric tensors, i.e.,
c ∈ null(Q) ∩ vec(Symd

R).

19

Equivalent condition II
c is a column of C−1 if and only if XT c is equal to a column of A ⊙ B

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

Qvec(c⊗d) =

P⊗
1 (xT

1 , . . . , xT
N)

...
P⊗

K (xT
1 , . . . , xT

N)

 vec(c ⊗ · · · ⊗ c) = 0

The columns of C−1 belong to the intersection of Q kernel and vec(SymN
R) the

subspace of vectorized order N symmetric tensors, i.e.,
c ∈ null(Q) ∩ vec(Symd

R).

19

Equivalent condition II
c is a column of C−1 if and only if XT c is equal to a column of A ⊙ B

P⊗
k (xT

1 , . . . , xT
N)(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

Qvec(c⊗d) =

P⊗
1 (xT

1 , . . . , xT
N)

...
P⊗

K (xT
1 , . . . , xT

N)

 vec(c ⊗ · · · ⊗ c) = 0

The columns of C−1 belong to the intersection of Q kernel and vec(SymN
R) the

subspace of vectorized order N symmetric tensors, i.e.,
c ∈ null(Q) ∩ vec(Symd

R).

19

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

20

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;

1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;

1.2 compute the space E0 = null(Q) ∩ vec(Symd
R)

1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d
1 , . . . , c⊗d

R } basis of E0;
1.2.2 if dim E0 > R, then compute Eh+1 such that

Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h
R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)

1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d
1 , . . . , c⊗d

R } basis of E0;
1.2.2 if dim E0 > R, then compute Eh+1 such that

Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h
R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;

2. compute
(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R)

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.

21

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

22

Numerical and computational obstacles

Computational complexity: large and structured objects;

NP-hardness;
Numerical conditioning and stability;

Work in progress

Advice is welcome!

23

Numerical and computational obstacles

Computational complexity: large and structured objects;
NP-hardness;

Numerical conditioning and stability;

Work in progress

Advice is welcome!

23

Numerical and computational obstacles

Computational complexity: large and structured objects;
NP-hardness;
Numerical conditioning and stability;

Work in progress

Advice is welcome!

23

Numerical and computational obstacles

Computational complexity: large and structured objects;
NP-hardness;
Numerical conditioning and stability;

Work in progress

Advice is welcome!
23

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

24

Q for CPD [Domanov and De Lathauwer 2013]
Let X be an order-3 tensor of dimension (I × J × R), then

XR

X1I

J

K

Definition: Q is a C2
I C2

J × C2
R+1 matrix whose k-th column can be written as

Q(·, k) = vec
(
C2(Xk1 + Xk2) − C2(Xk1) − C2(Xk2)

)
where

(k1, k2) is the k-th element of Q2
R = {(k1, k2) : 1 ≤ k1 ≤ k2 ≤ R};

C2
N is the binomial of N over 2;

C2(Xh) is the matrix with the determinants of every 2 × 2 minors of Xh.
25

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));

q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));

q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

]

Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

26

Possible choices

Ignore structure and compute Q by its definition;

Use structure and compute QT Q;
Use structure and compute Q;

All options present limitations!

27

Possible choices

Ignore structure and compute Q by its definition;
Use structure and compute QT Q;

Use structure and compute Q;

All options present limitations!

27

Possible choices

Ignore structure and compute Q by its definition;
Use structure and compute QT Q;
Use structure and compute Q;

All options present limitations!

27

Possible choices

Ignore structure and compute Q by its definition;
Use structure and compute QT Q;
Use structure and compute Q;

All options present limitations!

27

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

28

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

28

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

28

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

28

Structure highlight
Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q is

Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

 .

We can remark that
the entries of α1 appears† in a1aT

2 − a2aT
1

the entries of β1 appears† in b1bT
2 − b2bT

1
the entries of γ1 − (α1 + β1) appears† in a1bT

2 + b1aT
2 − bT

2 a1 − a2bT
1

† twice with opposite sign
29

Structure highlight
Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q is

Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

 .

We can remark that
the entries of α1 appears† in a1aT

2 − a2aT
1

the entries of β1 appears† in b1bT
2 − b2bT

1
the entries of γ1 − (α1 + β1) appears† in a1bT

2 + b1aT
2 − bT

2 a1 − a2bT
1

† twice with opposite sign
29

Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:

the diagonal entries are zeros;
it is skew-symmetric;
the elements highlighted are the entries of C2([a b]).

30

Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:

the diagonal entries are zeros;
it is skew-symmetric;
the elements highlighted are the entries of C2([a b]).

30

Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:
the diagonal entries are zeros;

it is skew-symmetric;
the elements highlighted are the entries of C2([a b]).

30

Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:
the diagonal entries are zeros;
it is skew-symmetric;

the elements highlighted are the entries of C2([a b]).

30

Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:
the diagonal entries are zeros;
it is skew-symmetric;
the elements highlighted are the entries of C2([a b]).

30

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed

⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.

32

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33

Possible new direction

Combining the two approaches

constructing Q benefiting from Q structure

develop† a more convenient matrix-vector product, using Q structure.

† possibly based on the exterior product
34

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

35

Intersection shrinking

Once Q † is computed, the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

has to be computed, cheking its dimension:
if dim E0 = R, then the algorithm proceed;
if dim E0 > R, then the intersection is shrinked, computing Eh+1 such that

Eh+1 = (KR ⊗ Eh) ∩ vec(SymN+h
R)

until dim Eh+1 = Rh+1 and then proceed.

or its Gram matrix QT Q.
36

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;

2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});

3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V

4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m
5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;

5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R)

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m
5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.

37

Eh+1 basis
If the matrix E0 of size (R2 × R̂) span the intersection subspace E0 with R̂ > R
until R̂ is equal to Rh+1, set h = 0 and repeat

1. compute Fh+1 the basis of
Fh+1 = KR ⊗ Eh

by a Kronecker product between the identity of order R and Eh the basis of Eh;
2. compute Eh+1 the basis of

Eh+1 = Fh+1 ∩ vec
(
Sym(h+1)+2

R
)

by symmetrizing the columns of Fh+1;
3. orthogonalize Eh+1;
4. check how many of Eh+1 columns satisfy the symmetric conditions, updating R̂.

38

Eh+1 basis
If the matrix E0 of size (R2 × R̂) span the intersection subspace E0 with R̂ > R
until R̂ is equal to Rh+1, set h = 0 and repeat

1. compute Fh+1 the basis of
Fh+1 = KR ⊗ Eh

by a Kronecker product between the identity of order R and Eh the basis of Eh;
2. compute Eh+1 the basis of

Eh+1 = Fh+1 ∩ vec
(
Sym(h+1)+2

R
)

by symmetrizing the columns of Fh+1;

3. orthogonalize Eh+1;
4. check how many of Eh+1 columns satisfy the symmetric conditions, updating R̂.

38

Eh+1 basis
If the matrix E0 of size (R2 × R̂) span the intersection subspace E0 with R̂ > R
until R̂ is equal to Rh+1, set h = 0 and repeat

1. compute Fh+1 the basis of
Fh+1 = KR ⊗ Eh

by a Kronecker product between the identity of order R and Eh the basis of Eh;
2. compute Eh+1 the basis of

Eh+1 = Fh+1 ∩ vec
(
Sym(h+1)+2

R
)

by symmetrizing the columns of Fh+1;
3. orthogonalize Eh+1;

4. check how many of Eh+1 columns satisfy the symmetric conditions, updating R̂.

38

Eh+1 basis
If the matrix E0 of size (R2 × R̂) span the intersection subspace E0 with R̂ > R
until R̂ is equal to Rh+1, set h = 0 and repeat

1. compute Fh+1 the basis of
Fh+1 = KR ⊗ Eh

by a Kronecker product between the identity of order R and Eh the basis of Eh;
2. compute Eh+1 the basis of

Eh+1 = Fh+1 ∩ vec
(
Sym(h+1)+2

R
)

by symmetrizing the columns of Fh+1;
3. orthogonalize Eh+1;
4. check how many of Eh+1 columns satisfy the symmetric conditions, updating R̂.

38

Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;
3. use Ch+1 as projector to obtain Eh+1;

and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method

39

Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;

3. use Ch+1 as projector to obtain Eh+1;
and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method

39

Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;
3. use Ch+1 as projector to obtain Eh+1;

and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method

39

Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;
3. use Ch+1 as projector to obtain Eh+1;

and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method

39

Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;
3. use Ch+1 as projector to obtain Eh+1;

and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method
39

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

40

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then

1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).

41

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then
1. reshape Eh+1 as a (Rh × R2) matrix;

2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).

41

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then
1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;

3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).

41

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then
1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;

4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).

41

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then
1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);

5. compute the CPD of R getting the factor C of size (R × R).

41

Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then
1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).

41

Possible tool

currently use Jenrich’s algorithm, based on GEVD†;

use an optimization based CPD algorithm;

use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

try to preserve (partially)-symmetric properties and tune CPD algorithm.

† problematic numerical stability Beltrán, Breiding, et al. 2019.
42

Possible tool

currently use Jenrich’s algorithm, based on GEVD†;

use an optimization based CPD algorithm;

use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

try to preserve (partially)-symmetric properties and tune CPD algorithm.

† problematic numerical stability Beltrán, Breiding, et al. 2019.
42

Possible tool

currently use Jenrich’s algorithm, based on GEVD†;

use an optimization based CPD algorithm;

use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

try to preserve (partially)-symmetric properties and tune CPD algorithm.

† problematic numerical stability Beltrán, Breiding, et al. 2019.
42

Possible tool

currently use Jenrich’s algorithm, based on GEVD†;

use an optimization based CPD algorithm;

use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

try to preserve (partially)-symmetric properties and tune CPD algorithm.

† problematic numerical stability Beltrán, Breiding, et al. 2019.
42

Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion

43

Summary
Current state

Blind Source Separation problem;

conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;

conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;

outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;

designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress

using matrix structure in the computation of Q;
exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;

using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Summary
Current state

Blind Source Separation problem;
conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.

44

Thank you for the attention!
Questions? Advice?

45

References I

Beltrán, Carlos, Paul Breiding, and Nick Vannieuwenhoven (Jan. 2019).
“Pencil-Based Algorithms for Tensor Rank Decomposition are not Stable”. In:
SIAM J. Matrix Anal. Appl. 40.2, pp. 739–773.
Comon, P. and C. Jutten (2009). Handbook of blind source separation:
Independent component analysis and applications. Academic press.
Domanov, I. and L. De Lathauwer (July 2013). “On the uniqueness of the
canonical polyadic decomposition of third-order tensors — Part I: Basic results and
uniqueness of one factor matrix”. In: SIAM J. Matrix Anal. Appl. 34.3,
pp. 855–875.
— (June 2016). “Generic Uniqueness of a Structured Matrix Factorization and
Applications in Blind Source Separation”. In: IEEE J. Sel. Topics Signal Process.
10.4, pp. 701–711.

46

References II

Evert E. Vandecappelle M., De Lathauwer L. (2020). A recursive eigenspace
computation for the canonical polyadic decomposition. Tech. rep. 20-80. Leuven,
Belgium: ESAT-STADIUS, KU Leuven.

47

	
	
	
	
	
	
	
	
	
	
	
	
	References

