From blind source separation to tensor decomposition: an algebraic algorithm

Martina Iannacito

joint work with Ignat Domanov and Lieven De Lathauwer

Numa seminar Leuven, Belgium, October 26, 2023

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Constraints for uniqueness

Let \boldsymbol{X} be a matrix

Definition: a *deterministic condition of* \mathbf{X} is a particular matrix property which is always true.

Definition: a generic condition of **X** depends on a parameter $z \in \Omega$ and holds almost everywhere, i.e., if Σ is the set of z values for which the condition doesn't hold, then $\mu(\Sigma) = 0$ where μ is a measure absolute continuous w.r.t. the Lebesgue one.

■ Statistical independence → Independent Component Analysis;

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Ind}}$$

• Statistical independence \rightarrow Independent Component Analysis;

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Ind}}$$

 $\blacksquare Nonnegativity \rightarrow Nonnegative Matrix Factorization;$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{+}}$$

• Statistical independence \rightarrow Independent Component Analysis;

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Ind}}$$

 $\blacksquare \ Nonnegativity \rightarrow Nonnegative \ Matrix \ Factorization;$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{+}}$$

 $\blacksquare Sparsity \rightarrow Sparse Component Analysis;$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Max0}}$$

• Statistical independence \rightarrow Independent Component Analysis;

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Ind}}$$

 $\blacksquare \ Nonnegativity \rightarrow Nonnegative \ Matrix \ Factorization;$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{+}}$$

 $\blacksquare Sparsity \rightarrow Sparse Component Analysis;$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Max0}}$$

. . . .

General case

General case

Uniqueness isn't guaranteed!

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Constraints for uniqueness

Let \boldsymbol{X} be a matrix

Definition: a *deterministic condition of* \mathbf{X} is a particular matrix property which is always true.

Definition: a generic condition of **X** depends on a parameter $\mathbf{z} \in \Omega$ and holds almost everywhere, i.e., if Σ is the set of \mathbf{z} values for which the condition doesn't hold, then $\mu(\Sigma) = 0$ where μ is a measure absolute continuous w.r.t. the Lebesgue one.

where

z $\in \Omega$ a subset of \mathbb{R}^n ;

where

- **z** $\in \Omega$ a subset of \mathbb{R}^n ;
- **m** $_r(z)$ are linearly independent;

where

- **z** $\in \Omega$ a subset of \mathbb{R}^n ;
- **m** $_r(z)$ are linearly independent;
- each $\mathbf{s}_r(\mathbf{z})$ depends on ℓ independent parameters, entries of $\boldsymbol{\xi}_r \in \mathbb{R}^{\ell}$;

where

- **z** $\in \Omega$ a subset of \mathbb{R}^n ;
- **m** $_r(z)$ are linearly independent;
- each $\mathbf{s}_r(\mathbf{z})$ depends on ℓ independent parameters, entries of $\boldsymbol{\xi}_r \in \mathbb{R}^{\ell}$;
- each $\mathbf{s}_r(\boldsymbol{\xi}_r)$ has the structure

$$\mathbf{s}(\boldsymbol{\xi}_r) = \begin{bmatrix} \frac{p_1}{q_1} \circ \mathbf{f}(\boldsymbol{\xi}_r) & \dots & \frac{p_N}{q_N} \circ \mathbf{f}(\boldsymbol{\xi}_r) \end{bmatrix}$$

with p_h, q_h polynomials and $\mathbf{f} = [f_1, \ldots, f_\ell]$ a vectorial function.

Given the observed mixtures, we assume that

■ the mixture matrix **M** is constant and full rank;

Given the observed mixtures, we assume that

- the mixture matrix M is constant and full rank;
- the source signals can be modeled by rational functions, i.e., the columns of S are sampled of

$$s(t)=rac{a_0+a_1t+\cdots+a_pt^p}{b_0+b_1t+\cdots+b_qt^q} \qquad ext{with} \qquad a_i,b_i\in\mathbb{R}, \quad t\in[t_b,t_e]$$

Given the observed mixtures, we assume that

- the mixture matrix M is constant and full rank;
- the source signals can be modeled by rational functions, i.e., the columns of S are sampled of

$$s(t) = \frac{a_0 + a_1 t + \dots + a_p t^p}{b_0 + b_1 t + \dots + b_q t^q} \quad \text{with} \quad a_i, b_i \in \mathbb{R}, \quad t \in [t_b, t_e]$$

• $\boldsymbol{\xi} = [a_0, \ldots, a_p, b_0, \ldots, b_q]$

Given the observed mixtures, we assume that

- the mixture matrix **M** is constant and full rank;
- the source signals can be modeled by rational functions, i.e., the columns of S are sampled of

$$s(t) = rac{a_0 + a_1 t + \dots + a_p t^p}{b_0 + b_1 t + \dots + b_q t^q}$$
 with $a_i, b_i \in \mathbb{R}, t \in [t_b, t_e]$
 $a_0, \dots, a_p, b_0, \dots, b_q]$ $\bullet \ \ell = p + q + 2$

Given the observed mixtures, we assume that

- the mixture matrix **M** is constant and full rank;
- the source signals can be modeled by rational functions, i.e., the columns of S are sampled of

$$s(t) = rac{a_0 + a_1 t + \dots + a_p t^p}{b_0 + b_1 t + \dots + b_q t^q}$$
 with $a_i, b_i \in \mathbb{R}, t \in [t_b, t_e];$
 $a_0, \dots, a_p, b_0, \dots, b_q]$ $\bullet \ \ell = p + q + 2$ $\bullet \ \mathbf{f}$ is the identity

A cookbook recipe for generic uniqueness

[Domanov and De Lathauwer 2016]

Let
$$\mathbf{t}(\mathbf{x}) = \begin{bmatrix} \frac{p_1}{q_1}(\mathbf{x}) & \dots & \frac{p_N}{q_N}(\mathbf{x}) \end{bmatrix}^T$$
 for $\mathbf{x} \in \Theta = \{\mathbf{x} \in \mathbb{C}^\ell : q_1(\mathbf{x}) \cdots q_N(\mathbf{x}) \neq 0\}$, if

- 1. rank $\mathbf{M}(z) = R$ for a generic choice of \mathbf{z} ;
- 2. each f_h is the ratio of two analytical functions on \mathbb{C}^{ℓ} ;
- 3. there exists $\boldsymbol{\xi}_0 \in \mathbb{C}^\ell$ s.t. det $J(\boldsymbol{f}, \boldsymbol{\xi}_0) \neq 0$;
- 4. the dimension of the span of $\mathbf{t}(\mathbf{x})$ for $\mathbf{x} \in \Theta$ is at least \hat{N} ;
- 5. rank $\mathbf{J}(\mathbf{t}, \mathbf{x}) > \hat{\ell}$ for a generic choice of \mathbf{z} ; 6. $R \leq \hat{N} - \hat{\ell}$;

then

$$\mathbf{X} = \sum_{r=1}^{R} \mathbf{m}_r(\mathbf{z}) \otimes \mathbf{s}(\boldsymbol{\xi}_r)$$

is generically unique.

Remarks for BSS

It is assumed that the columns of $\boldsymbol{\mathsf{S}}$ are values of the rational function

$$\mathbf{t}: \mathbf{x} o \begin{bmatrix} rac{p_1}{q_1}(\mathbf{x}) & \dots & rac{p_N}{q_N}(\mathbf{x}) \end{bmatrix}^T$$
 .

Remarks for BSS

It is assumed that the columns of $\boldsymbol{\mathsf{S}}$ are values of the rational function

$$\mathbf{t}:\mathbf{x}
ightarrow egin{bmatrix}rac{p_1}{q_1}(\mathbf{x}) & \dots & rac{p_N}{q_N}(\mathbf{x})\end{bmatrix}^T.$$

The columns of **S** belong to an algebraic variety \mathcal{V} which is described by a finite system of polynomials $\{P_k\}_{k=1}^{K}$

Remarks for BSS

It is assumed that the columns of $\boldsymbol{\mathsf{S}}$ are values of the rational function

$$\mathbf{t}:\mathbf{x}
ightarrow egin{bmatrix}rac{p_1}{q_1}(\mathbf{x}) & \dots & rac{p_N}{q_N}(\mathbf{x})\end{bmatrix}^T.$$

The columns of **S** belong to an algebraic variety \mathcal{V} which is described by a finite system of polynomials $\{P_k\}_{k=1}^{K}$

$$\mathcal{V} = \Big\{(z_1,\ldots,z_N) \in \mathbb{C}^N : P_k(z_1,\ldots,z_N) = 0\Big\}.$$

Composed with the function \boldsymbol{f}

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD

Link with the CPD

if $\mathcal{X} = \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1 + \ldots + \mathbf{a}_R \otimes \mathbf{b}_R \otimes \mathbf{c}_R$ $\mathbf{c}_1 \qquad \mathbf{c}_R$ $\mathbf{c}_1 \qquad \mathbf{c}_R$ $\mathbf{b}_1 \qquad + \cdots + \qquad \mathbf{b}_R$ \mathbf{a}_R

Link with the CPD

if $\mathcal{X} = \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1 + \ldots + \mathbf{a}_R \otimes \mathbf{b}_R \otimes \mathbf{c}_R$

then
$$\mathbf{X}^{(3)} = (\mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1) \otimes \mathbf{c}_1^T + \ldots + (\mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R) \otimes \mathbf{c}_R^T$$

 $\mathbf{X}^{(3)} = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_1 \\ \mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1 \end{bmatrix} + \cdots + \begin{bmatrix} \mathbf{c}_R \\ \mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R \end{bmatrix}$

Link with the CPD

if $\mathcal{X} = \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1 + \ldots + \mathbf{a}_R \otimes \mathbf{b}_R \otimes \mathbf{c}_R$

then
$$\mathbf{X}^{(3)} = (\mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1) \otimes \mathbf{c}_1^T + \ldots + (\mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R) \otimes \mathbf{c}_R^T$$

 $\mathbf{X}^{(3)} = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1 \end{bmatrix} + \cdots + \begin{bmatrix} \mathbf{c}_R \\ \mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R \end{bmatrix}$
 $(\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \in \mathcal{V} = \left\{ \operatorname{vec}(\mathbf{Z}) : \begin{vmatrix} z_{i_1 j_1} & z_{i_1 j_2} \\ z_{i_2 j_1} & z_{i_2 j_2} \end{vmatrix} = 0 \right\}$

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

 \mathbf{Q} construction

Intersection shrinking

Symmetric CPD

Conclusion

Algebraic algorithm: high view

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

Algebraic algorithm: high view

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

If $\mathbf{X} = (\mathbf{X}^{(3)})^T$, then

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

If $\mathbf{X} = (\mathbf{X}^{(3)})^T$, then $\mathbf{X} = \mathbf{C} \qquad (\mathbf{A} \odot \mathbf{B})^T$ Known Unknown Unknown

1. compute C^{-1} from X;

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

If $\mathbf{X} = (\mathbf{X}^{(3)})^T$, then $\mathbf{X} = \mathbf{C} \qquad (\mathbf{A} \odot \mathbf{B})^T$ Known Unknown Unknown

1. compute C^{-1} from X;

2. compute $(\mathbf{A} \odot \mathbf{B})$ as the transposed product of $\mathbf{C}^{-1}\mathbf{X}$;

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

If $\mathbf{X} = (\mathbf{X}^{(3)})^T$, then $\mathbf{X} = \mathbf{C} \qquad (\mathbf{A} \odot \mathbf{B})^T$ Known Unknown Unknown

- 1. compute C^{-1} from X;
- 2. compute $(\mathbf{A} \odot \mathbf{B})$ as the transposed product of $\mathbf{C}^{-1}\mathbf{X}$;
- 3. factorize $(\mathbf{A} \odot \mathbf{B}) = [\mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1, \dots, \mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R]$ to recover \mathbf{A} and \mathbf{B} ;

Let \mathcal{X} be a $(I \times J \times R)$ tensor, then

$$\mathbf{X}^{(3)} = \sum_{r=1}^{R} (\mathbf{a}_r \otimes_{\mathrm{K}} \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathsf{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}.$$

If $\mathbf{X} = (\mathbf{X}^{(3)})^T$, then $\mathbf{X} = \mathbf{C} \qquad (\mathbf{A} \odot \mathbf{B})^T$ Known Unknown Unknown

- 1. compute C^{-1} from X;
- 2. compute $(\mathbf{A} \odot \mathbf{B})$ as the transposed product of $\mathbf{C}^{-1}\mathbf{X}$;
- 3. factorize $(\mathbf{A} \odot \mathbf{B}) = [\mathbf{a}_1 \otimes_{\mathrm{K}} \mathbf{b}_1, \dots, \mathbf{a}_R \otimes_{\mathrm{K}} \mathbf{b}_R]$ to recover \mathbf{A} and \mathbf{B} ;
- 4. compute **C** by solving $(\mathbf{A} \odot \mathbf{B})\mathbf{C} = \mathbf{X}$.

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^T \mathbf{c}$ is equal to a column of $(\mathbf{A} \odot \mathbf{B})$

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^T \mathbf{c}$ is equal to a column of $(\mathbf{A} \odot \mathbf{B})$

$$\mathbf{X}^{\mathsf{T}}\mathbf{c} = (\mathbf{x}_1^{\mathsf{T}}\mathbf{c}, \dots, \mathbf{x}_N^{\mathsf{T}}\mathbf{c}) = (z_1, \dots, z_N) \in \mathcal{V}$$

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^{T}\mathbf{c}$ is equal to a column of $(\mathbf{A} \odot \mathbf{B})$

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^{T}\mathbf{c}$ is equal to a column of $(\mathbf{A} \odot \mathbf{B})$

$$\mathbf{X}^{T}\mathbf{c} = (\mathbf{x}_{1}^{T}\mathbf{c}, \dots, \mathbf{x}_{N}^{T}\mathbf{c}) = (z_{1}, \dots, z_{N}) \in \mathcal{V}$$

$$\widehat{\mathbf{v}}$$

$$P_{k}(\mathbf{x}_{1}^{T}\mathbf{c}, \dots, \mathbf{x}_{N}^{T}\mathbf{c}) = 0 \text{ for } k = 1, \dots, K$$

$$\widehat{\mathbf{v}}$$

$$P_{k}^{\otimes}(\mathbf{x}_{1}^{T}, \dots, \mathbf{x}_{N}^{T})(\mathbf{c} \otimes \dots \otimes \mathbf{c}) = 0 \text{ for } k = 1, \dots, K$$

where $P_k^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T)$ is the vector obtained by formal substitution of (z_1, \dots, z_N) by $\mathbf{x}_1^T, \dots, \mathbf{x}_N^T$ and the scalar multiplication by the tensor product.

c is a column of **C**⁻¹ if and only if **X**^T**c** is equal to a column of **A** \odot **B** $P_{\nu}^{\otimes}(\mathbf{x}_{1}^{T}, \dots, \mathbf{x}_{N}^{T})(\mathbf{c} \otimes \dots \otimes \mathbf{c}) = 0$ for $k = 1, \dots, K$

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^{T}\mathbf{c}$ is equal to a column of $\mathbf{A} \odot \mathbf{B}$ $P_{k}^{\otimes}(\mathbf{x}_{1}^{T},\ldots,\mathbf{x}_{N}^{T})(\mathbf{c}\otimes\cdots\otimes\mathbf{c})=0$ for $k=1,\ldots,K$ $\mathbf{Q} \operatorname{vec}(\mathbf{c}^{\otimes d}) = \begin{bmatrix} P_1^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T) \\ \vdots \\ P_{\mathcal{C}}^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T) \end{bmatrix} \operatorname{vec}(\mathbf{c} \otimes \dots \otimes \mathbf{c}) = 0$

c is a column of \mathbf{C}^{-1} if and only if $\mathbf{X}^{T}\mathbf{c}$ is equal to a column of $\mathbf{A} \odot \mathbf{B}$ $P_{k}^{\otimes}(\mathbf{x}_{1}^{T},\ldots,\mathbf{x}_{N}^{T})(\mathbf{c}\otimes\cdots\otimes\mathbf{c})=0$ for $k=1,\ldots,K$ $\mathbf{Q} \operatorname{vec}(\mathbf{c}^{\otimes d}) = \begin{bmatrix} P_1^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T) \\ \vdots \\ P_{\mathcal{C}}^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T) \end{bmatrix} \operatorname{vec}(\mathbf{c} \otimes \dots \otimes \mathbf{c}) = 0$

The columns of \mathbf{C}^{-1} belong to the intersection of \mathbf{Q} kernel and $\operatorname{vec}(\operatorname{Sym}_R^N)$ the subspace of vectorized order N symmetric tensors, i.e., $\mathbf{c} \in \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d).$

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;

1. compute the factor matrix C^{-1} from X; 1.1 compute Q;

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute **Q**;
 - 1.2 compute the space $\mathcal{E}_0 = \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d)$

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute **Q**;
 - 1.2 compute the space $\mathcal{E}_0 = \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute **C** by a CPD of $\{\mathbf{c}_1^{\otimes d}, \ldots, \mathbf{c}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ;

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute Q;
 - 1.2 compute the space $\mathcal{E}_0 = \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute **C** by a CPD of $\{\mathbf{c}_1^{\otimes d}, \dots, \mathbf{c}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ; 1.2.2 if dim $\mathcal{E}_0 > R$, then compute \mathcal{E}_{h+1} such that

$$\mathcal{E}_{h+1} = (\mathbb{K} \otimes \mathcal{E}_h) \cap \mathsf{vec}(\mathsf{Sym}_R^{d+h})$$

until dim $\mathcal{E}_{h+1} = R^{h+1}$ and go to step 1.2.1;

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute Q;
 - 1.2 compute the space $\mathcal{E}_0 = \text{null}(\mathbf{Q}) \cap \text{vec}(\text{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute **C** by a CPD of $\{\mathbf{c}_1^{\otimes d}, \dots, \mathbf{c}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ; 1.2.2 if dim $\mathcal{E}_0 > R$, then compute \mathcal{E}_{h+1} such that

 $\mathcal{E}_{h+1} = (\mathbb{K} \otimes \mathcal{E}_h) \cap \mathsf{vec}(\mathsf{Sym}_R^{d+h})$

until dim $\mathcal{E}_{h+1} = \mathbb{R}^{h+1}$ and go to step 1.2.1;

2. compute $(\mathbf{A} \odot \mathbf{B})$ as $\mathbf{C}^{-1}\mathbf{X}$ transposed;

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute Q;
 - 1.2 compute the space $\mathcal{E}_0 = \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute **C** by a CPD of $\{\mathbf{c}_1^{\otimes d}, \dots, \mathbf{c}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ; 1.2.2 if dim $\mathcal{E}_0 > R$, then compute \mathcal{E}_{h+1} such that

$$\mathcal{E}_{h+1} = (\mathbb{K} \otimes \mathcal{E}_h) \cap \mathsf{vec}(\mathsf{Sym}_R^{d+h})$$

until dim $\mathcal{E}_{h+1} = R^{h+1}$ and go to step 1.2.1;

- 2. compute $(\mathbf{A} \odot \mathbf{B})$ as $\mathbf{C}^{-1}\mathbf{X}$ transposed;
- 3. factorize each column of $(\mathbf{A} \odot \mathbf{B})$ at rank-1 to retrieve \mathbf{A} and \mathbf{B} by SVD;

- 1. compute the factor matrix \mathbf{C}^{-1} from \mathbf{X} ;
 - 1.1 compute Q;
 - 1.2 compute the space $\mathcal{E}_0 = \operatorname{null}(\mathbf{Q}) \cap \operatorname{vec}(\operatorname{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute **C** by a CPD of $\{\mathbf{c}_1^{\otimes d}, \dots, \mathbf{c}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ; 1.2.2 if dim $\mathcal{E}_0 > R$, then compute \mathcal{E}_{h+1} such that

$$\mathcal{E}_{h+1} = (\mathbb{K} \otimes \mathcal{E}_h) \cap \mathsf{vec}(\mathsf{Sym}_R^{d+h})$$

until dim $\mathcal{E}_{h+1} = R^{h+1}$ and go to step 1.2.1;

- 2. compute $(\mathbf{A} \odot \mathbf{B})$ as $\mathbf{C}^{-1}\mathbf{X}$ transposed;
- 3. factorize each column of $(\mathbf{A} \odot \mathbf{B})$ at rank-1 to retrieve \mathbf{A} and \mathbf{B} by SVD;
- 4. compute **C** solving $(\mathbf{A} \odot \mathbf{B})^T \mathbf{C} = \mathbf{X}$.

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Computational complexity: large and structured objects;

- Computational complexity: large and structured objects;
- NP-hardness;

- Computational complexity: large and structured objects;
- NP-hardness;
- Numerical conditioning and stability;

- Computational complexity: large and structured objects;
- NP-hardness;
- Numerical conditioning and stability;

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

 ${\bf Q}$ for CPD

[Domanov and De Lathauwer 2013]

Let \mathcal{X} be an order-3 tensor of dimension $(I \times J \times R)$, then

Definition: **Q** is a $C_I^2 C_J^2 \times C_{R+1}^2$ matrix whose k-th column can be written as $\mathbf{Q}(\cdot, k) = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_{k_1} + \mathbf{X}_{k_2}) - \mathcal{C}_2(\mathbf{X}_{k_1}) - \mathcal{C}_2(\mathbf{X}_{k_2}))$

where

•
$$(k_1, k_2)$$
 is the *k*-th element of $Q_R^2 = \{(k_1, k_2) : 1 \le k_1 \le k_2 \le R\};$

- C_N^2 is the binomial of N over 2;
- $C_2(\mathbf{X}_h)$ is the matrix with the determinants of every 2 × 2 minors of \mathbf{X}_h .

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\bm{Q} = \begin{bmatrix} \bm{q}_1 & \bm{q}_2 & \bm{q}_3 \end{bmatrix}$ associated with $\mathcal X$ slices is such that

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with \mathcal{X} slices is such that $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1));$

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with $\mathcal X$ slices is such that

- $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) \mathcal{C}_2(\mathbf{X}_1) \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1));$
- **q**₂ = vec($C_2(X_1 + X_2) C_2(X_1) C_2(X_2)$);

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with $\mathcal X$ slices is such that

 $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1));$

■
$$\mathbf{q}_2 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_2));$$

 $\mathbf{q}_3 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2)).$

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with \mathcal{X} slices is such that

 $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1));$

■
$$\mathbf{q}_2 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_2));$$

 $\mathbf{q}_3 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2)).$

The compound matrices are

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with \mathcal{X} slices is such that

 $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1));$

■
$$\mathbf{q}_2 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_2));$$

 $\mathbf{q}_3 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2)).$

The compound matrices are

$$\square \qquad \mathbf{Q} = \begin{bmatrix} 2\alpha_1 & \gamma_1 - (\alpha_1 + \beta_1) & 2\beta_1 \\ 2\alpha_2 & \gamma_2 - (\alpha_2 + \beta_2) & 2\beta_2 \\ 2\alpha_3 & \gamma_3 - (\alpha_3 + \beta_3) & 2\beta_3 \end{bmatrix}$$

■ *Ignore structure* and compute **Q** by its definition;

- Ignore structure and compute **Q** by its definition;
- Use structure and compute $\mathbf{Q}^T \mathbf{Q}$;
- Ignore structure and compute **Q** by its definition;
- Use structure and compute $\mathbf{Q}^T \mathbf{Q}$;
- Use structure and compute **Q**;

- Ignore structure and compute **Q** by its definition;
- Use structure and compute **Q**^T**Q**;
- Use structure and compute **Q**;

All options present limitations!

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

each entry requires two multiplications;

• the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R\sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R\sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R\sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Structure highlight

Example

Let $\mathcal X$ be an order-3 tensor of dimension ($I \times 3 \times 2$) such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix **Q** is

$$\mathbf{Q} = egin{bmatrix} 2lpha_1 & \gamma_1 - (lpha_1 + eta_1) & 2eta_1 \ 2lpha_2 & \gamma_2 - (lpha_2 + eta_2) & 2eta_2 \ 2lpha_3 & \gamma_3 - (lpha_3 + eta_3) & 2eta_3 \end{bmatrix}.$$

Structure highlight

Example

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$.

The matrix **Q** is

$$\mathbf{Q} = egin{bmatrix} 2lpha_1 & \gamma_1 - (lpha_1 + eta_1) & 2eta_1 \ 2lpha_2 & \gamma_2 - (lpha_2 + eta_2) & 2eta_2 \ 2lpha_3 & \gamma_3 - (lpha_3 + eta_3) & 2eta_3 \end{bmatrix}.$$

We can remark that

- the entries of α_1 appears[†] in $\mathbf{a}_1 \mathbf{a}_2^T \mathbf{a}_2 \mathbf{a}_1^T$
- the entries of β_1 appears[†] in $\mathbf{b}_1 \mathbf{b}_2^T \mathbf{b}_2 \mathbf{b}_1^T$
- the entries of $\gamma_1 (\alpha_1 + \beta_1)$ appears[†] in $\mathbf{a}_1 \mathbf{b}_2^T + \mathbf{b}_1 \mathbf{a}_2^T \mathbf{b}_2^T \mathbf{a}_1 \mathbf{a}_2 \mathbf{b}_1^T$

Exterior algebra and \mathcal{C}_2

Definition: The exterior product $\wedge : \mathbb{R}^{I} \times \mathbb{R}^{J} \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T$$
.

Definition: The exterior product $\wedge : \mathbb{R}^I \times \mathbb{R}^J \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T.$$

The matrix $\mathbf{a} \wedge \mathbf{b}$ has the properties:

Definition: The exterior product $\wedge : \mathbb{R}^I \times \mathbb{R}^J \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T.$$

Example Let $\mathbf{a}^T = \begin{bmatrix} a & b & c \end{bmatrix}$ and $\mathbf{b}^T = \begin{bmatrix} d & e & f \end{bmatrix}$ be two vectors, then $\mathbf{a} \wedge \mathbf{b} = \begin{bmatrix} 0 & ae - bd & af - cd \\ -ae + bd & 0 & bf - ce \\ -af + cd & -bf + ce & 0 \end{bmatrix}$.

The matrix $\mathbf{a} \wedge \mathbf{b}$ has the properties:

the diagonal entries are zeros;

Definition: The exterior product $\wedge : \mathbb{R}^I \times \mathbb{R}^J \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T.$$

Example Let $\mathbf{a}^T = \begin{bmatrix} a & b & c \end{bmatrix}$ and $\mathbf{b}^T = \begin{bmatrix} d & e & f \end{bmatrix}$ be two vectors, then $\mathbf{a} \wedge \mathbf{b} = \begin{bmatrix} 0 & ae - bd & af - cd \\ -ae + bd & 0 & bf - ce \\ -af + cd & -bf + ce & 0 \end{bmatrix}$.

The matrix $\mathbf{a} \wedge \mathbf{b}$ has the properties:

- the diagonal entries are zeros;
- it is skew-symmetric;

Definition: The exterior product $\wedge : \mathbb{R}^I \times \mathbb{R}^J \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T.$$

Example Let $\mathbf{a}^T = \begin{bmatrix} a & b & c \end{bmatrix}$ and $\mathbf{b}^T = \begin{bmatrix} d & e & f \end{bmatrix}$ be two vectors, then $\mathbf{a} \wedge \mathbf{b} = \begin{bmatrix} 0 & ae - bd & af - cd \\ -ae + bd & 0 & bf - ce \\ -af + cd & -bf + ce & 0 \end{bmatrix}$.

The matrix $\mathbf{a} \wedge \mathbf{b}$ has the properties:

- the diagonal entries are zeros;
- it is skew-symmetric;
- the elements highlighted are the entries of $C_2([\mathbf{a} \ \mathbf{b}])$.

$$\begin{array}{l} \mbox{Property: } \left< \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mbox{vec}(\mathbf{a} \wedge \mathbf{b}), \mbox{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ = 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

$$\begin{array}{l} \mathsf{Property:}\; \left< \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}), \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ &= 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

$$\begin{array}{l} \mbox{Property: } \left< \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mbox{vec}(\mathbf{a} \wedge \mathbf{b}), \mbox{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ = 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

Idea: Using the exterior and exploiting the structure.

 \blacksquare ${\bf Q}$ is not explicitly constructed

$$\begin{array}{l} \mathsf{Property:}\; \left< \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}), \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ &= 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

- **Q** is not explicitly constructed
- $\langle \mathbf{q}_k, \mathbf{q}_h \rangle = \langle \operatorname{vec}(\mathcal{C}_2(\mathbf{Y})), \operatorname{vec}(\mathcal{C}_2(\mathbf{Z})) \rangle$ with \mathbf{Y}, \mathbf{Z} slices or a linear combination of slices of the input tensor \mathcal{X} .

$$\begin{array}{l} \mathsf{Property:}\; \left< \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}), \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ &= 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

- **Q** is not explicitly constructed
- ⟨q_k, q_h⟩ = ⟨vec(C₂(Y)), vec(C₂(Z))⟩ with Y, Z slices or a linear combination of slices of the input tensor X.

$$\langle \mathbf{q}_k, \mathbf{q}_h
angle = \mathsf{tr}(\mathbf{A}_{h_1k_1})\mathsf{tr}(\mathbf{A}_{h_2k_2}) + \mathsf{tr}(\mathbf{A}_{h_1k_2})\mathsf{tr}(\mathbf{A}_{h_2k_1}) - \mathsf{tr}(\mathbf{A}_{h_1k_1}^{\mathsf{T}}\mathbf{A}_{h_1k_2}) - \mathsf{tr}(\mathbf{A}_{h_1k_2}^{\mathsf{T}}\mathbf{A}_{h_2k_1})$$

$$\begin{array}{l} \mathsf{Property:}\; \left< \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mathsf{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}), \mathsf{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ &= 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

- **Q** is not explicitly constructed
- $\langle \mathbf{q}_k, \mathbf{q}_h \rangle = \langle \text{vec}(\mathcal{C}_2(\mathbf{Y})), \text{vec}(\mathcal{C}_2(\mathbf{Z})) \rangle$ with \mathbf{Y}, \mathbf{Z} slices or a linear combination of slices of the input tensor \mathcal{X} .

$$\langle \mathbf{q}_k, \mathbf{q}_h
angle = \mathsf{tr}(\mathbf{A}_{h_1k_1})\mathsf{tr}(\mathbf{A}_{h_2k_2}) + \mathsf{tr}(\mathbf{A}_{h_1k_2})\mathsf{tr}(\mathbf{A}_{h_2k_1}) - \mathsf{tr}(\mathbf{A}_{h_1k_1}^{\mathsf{T}}\mathbf{A}_{h_1k_2}) - \mathsf{tr}(\mathbf{A}_{h_1k_2}^{\mathsf{T}}\mathbf{A}_{h_2k_1})$$

where
$$\mathbf{A}_{h_ik_j} = \mathbf{X}_{h_i}^T \mathbf{X}_{k_j}$$
 for $h_i \leq k_j$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Gram construction: the matrix $\mathbf{Q}^T \mathbf{Q}$ has size $(C_{R+1}^2 \times C_{R+1}^2)$

Let
$$\mathbf{a}_{h_i,k_j} = \operatorname{vec}(\mathbf{A}_{h_i,k_j}) = \operatorname{vec}(\mathbf{X}_{h_i}^T \mathbf{X}_{k_j})$$
 be a vector of length J^2 , then
 $\mathbf{I}_{\mathbf{x}} = \operatorname{tr}(\mathbf{A}_{h_i,k_j}^T \mathbf{A}_{k_\ell,h_m}) = \mathbf{a}_{h_i,k_\ell}^T \mathbf{a}_{k_\ell,h_m};$

• compute $\mathbf{a}_{h_i,k_i}^T \mathbf{a}_{k_\ell,h_m}$ require J^2 multiplications;

• the total number of inner product to compute is C_{N+1}^2 with $N = C_{R+1}^2$;

assuming that $J\sim \sqrt{R}$, then the computational complexity is $R^5/8$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Gram construction: the matrix $\mathbf{Q}^T \mathbf{Q}$ has size $(C_{R+1}^2 \times C_{R+1}^2)$ Let $\mathbf{a}_{h_i,k_j} = \operatorname{vec}(\mathbf{A}_{h_i,k_j}) = \operatorname{vec}(\mathbf{X}_{h_i}^T \mathbf{X}_{k_j})$ be a vector of length J^2 , then $\mathbf{tr}(\mathbf{A}_{h_i,k_j}^T \mathbf{A}_{k_\ell,h_m}) = \mathbf{a}_{h_i,k_j}^T \mathbf{a}_{k_\ell,h_m};$ \mathbf{s} compute $\mathbf{a}_{h_i,k_j}^T \mathbf{a}_{k_\ell,h_m}$ require J^2 multiplications; \mathbf{s} the total number of inner product to compute is C_{N+1}^2 with $N = C_{R+1}^2;$

assuming that $J \sim \sqrt{R}$, then the computational complexity is $R^5/8$.

Let \mathcal{X} be a $(I \times J \times R)$ tensor of rank R

Direct construction: the matrix **Q** has size $(C_I^2 C_J^2 \times C_{R+1}^2)$

- each entry requires two multiplications;
- the total number of entries is (IJR(I-1)(J-1)(R+1))/8;

assuming that $R \sim IJ$, then the computational complexity is $R^4/4$.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	~~~
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
Jize	det	recursive	Y Y
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	~~~
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	Y Y
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	Y Y
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	~~~
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Given an input random tensor \mathcal{X} of dimensions $(I \times I \times R)$ such that its rank is

$$R = (I-1)^2$$

Size	Q		$\mathbf{O}^{T}\mathbf{O}$
	det	recursive	<u>v</u> vv
(11, 11, 100)	1.364e+01	1.556e+00	7.373e-01
(12, 12, 121)	2.876e+01	3.613e+00	1.621e+00
(13, 13, 144)	5.814e+01	6.353e+00	3.477e+00
(14, 14, 169)	1.071e+02	1.130e+01	6.928e+00
(15, 15, 196)	1.937e+02	1.956e+01	8.954e+01
(16, 16, 225)	3.298e+02	3.291e+01	9.325e+02

Table: Time estimates in seconds for computing \mathbf{Q} and its Gram matrix.

Combining the two approaches

constructing Q

benefiting from **Q** structure

develop^{\dagger} a more convenient matrix-vector product, using **Q** structure.

[†] possibly based on the exterior product

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Intersection shrinking

Once \mathbf{Q}^{\dagger} is computed, the intersection subspace

 $\mathcal{E}_0 = \mathsf{null}(\mathbf{Q}) \cap \mathsf{vec}(\mathsf{Sym}_R^N)$

has to be computed, cheking its dimension:

- if dim $\mathcal{E}_0 = R$, then the algorithm proceed;
- if dim $\mathcal{E}_0 > R$, then the intersection is shrinked, computing \mathcal{E}_{h+1} such that

$${\mathcal E}_{h+1} = ({\mathbb K}^R \otimes {\mathcal E}_h) \cap {\sf vec}({\sf Sym}_R^{N+h})$$

until dim $\mathcal{E}_{h+1} = R^{h+1}$ and then proceed.

or its Gram matrix $\mathbf{Q}^T \mathbf{Q}$.

\mathcal{E}_0 basis

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$
If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

- 1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;
- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

- 1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;
- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;
- 3. define the basis of null(Q) as $\mathbf{F}_0 = [\mathbf{v}_{m+1}, \dots, \mathbf{v}_N]$ with \mathbf{v}_ℓ the ℓ -th column of V

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;

- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;
- 3. define the basis of null(Q) as $\mathbf{F}_0 = [\mathbf{v}_{m+1}, \dots, \mathbf{v}_N]$ with \mathbf{v}_ℓ the ℓ -th column of V
- 4. define the basis of the intersection subspace

 $\mathcal{E}_0 = \mathsf{null}(\mathbf{Q}) \cap \mathsf{vec}(\mathsf{Sym}_R^N)$

as $\mathbf{E}_0 = \mathbf{G}_0 \mathbf{F}_0$ where the matrix \mathbf{G}_0 has size $(R^2 \times N)$ and comes from the symmetrization of the canonical basis of order-2 tensors of size $(R \times R)$;

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;

- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;
- 3. define the basis of null(Q) as $\mathbf{F}_0 = [\mathbf{v}_{m+1}, \dots, \mathbf{v}_N]$ with \mathbf{v}_ℓ the ℓ -th column of V
- 4. define the basis of the intersection subspace

 $\mathcal{E}_0 = \mathsf{null}(\mathbf{Q}) \cap \mathsf{vec}(\mathsf{Sym}_R^N)$

as $\mathbf{E}_0 = \mathbf{G}_0 \mathbf{F}_0$ where the matrix \mathbf{G}_0 has size $(R^2 \times N)$ and comes from the symmetrization of the canonical basis of order-2 tensors of size $(R \times R)$;

5. compute \hat{R} the dimension of the intersection as $\hat{R} = N - m$

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;

- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;
- 3. define the basis of null(Q) as $\mathbf{F}_0 = [\mathbf{v}_{m+1}, \dots, \mathbf{v}_N]$ with \mathbf{v}_ℓ the ℓ -th column of V
- 4. define the basis of the intersection subspace

 $\mathcal{E}_0 = \mathsf{null}(\mathbf{Q}) \cap \mathsf{vec}(\mathsf{Sym}_R^N)$

as $\mathbf{E}_0 = \mathbf{G}_0 \mathbf{F}_0$ where the matrix \mathbf{G}_0 has size $(R^2 \times N)$ and comes from the symmetrization of the canonical basis of order-2 tensors of size $(R \times R)$;

5. compute \hat{R} the dimension of the intersection as $\hat{R} = N - m$ 5.1 if \hat{R} is equal to R, then reshape **E**₀ as a ($R \times R \times R$) and compute its CPD;

If **Q** the $(M \times N)$ is matrix whose kernel is needed with $M = C_I^2 C_J^2$ and $N = C_{R+1}^2$

1. compute the SVD as $\mathbf{Q} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$;

- 2. define $m \in \mathbb{N}$ such that σ_m is the last singular value larger than $(\varepsilon \max\{M, N\})$;
- 3. define the basis of null(Q) as $\mathbf{F}_0 = [\mathbf{v}_{m+1}, \dots, \mathbf{v}_N]$ with \mathbf{v}_ℓ the ℓ -th column of V
- 4. define the basis of the intersection subspace

 $\mathcal{E}_0 = \mathsf{null}(\mathbf{Q}) \cap \mathsf{vec}(\mathsf{Sym}_R^N)$

as $\mathbf{E}_0 = \mathbf{G}_0 \mathbf{F}_0$ where the matrix \mathbf{G}_0 has size $(R^2 \times N)$ and comes from the symmetrization of the canonical basis of order-2 tensors of size $(R \times R)$;

- 5. compute \hat{R} the dimension of the intersection as $\hat{R} = N m$
 - 5.1 if \hat{R} is equal to R, then reshape \mathbf{E}_0 as a $(R \times R \times R)$ and compute its CPD; 5.2 if \hat{R} is *not* equal to R, then shrink the intersection until $\hat{R} = R^{h+1}$.

If the matrix \mathbf{E}_0 of size $(R^2 \times \hat{R})$ span the intersection subspace \mathcal{E}_0 with $\hat{R} > R$ until \hat{R} is equal to R^{h+1} , set h = 0 and repeat

If the matrix \mathbf{E}_0 of size $(R^2 \times \hat{R})$ span the intersection subspace \mathcal{E}_0 with $\hat{R} > R$ until \hat{R} is equal to R^{h+1} , set h = 0 and repeat

1. compute \mathbf{F}_{h+1} the basis of

$$\mathcal{F}_{h+1} = \mathbb{K}^R \otimes \mathcal{E}_h$$

by a Kronecker product between the identity of order R and \mathbf{E}_h the basis of \mathcal{E}_h ; 2. compute \mathbf{E}_{h+1} the basis of

$$\mathcal{E}_{h+1} = \mathcal{F}_{h+1} \cap \mathsf{vec}(\mathsf{Sym}_R^{(h+1)+2})$$

by symmetrizing the columns of \mathbf{F}_{h+1} ;

If the matrix \mathbf{E}_0 of size $(R^2 \times \hat{R})$ span the intersection subspace \mathcal{E}_0 with $\hat{R} > R$ until \hat{R} is equal to R^{h+1} , set h = 0 and repeat

1. compute \mathbf{F}_{h+1} the basis of

$$\mathcal{F}_{h+1} = \mathbb{K}^R \otimes \mathcal{E}_h$$

by a Kronecker product between the identity of order R and \mathbf{E}_h the basis of \mathcal{E}_h ; 2. compute \mathbf{E}_{h+1} the basis of

$${\mathcal E}_{h+1} = {\mathcal F}_{h+1} \cap {\sf vec} ({\sf Sym}_R^{(h+1)+2})$$

by symmetrizing the columns of \mathbf{F}_{h+1} ;

3. orthogonalize \mathbf{E}_{h+1} ;

If the matrix \mathbf{E}_0 of size $(R^2 \times \hat{R})$ span the intersection subspace \mathcal{E}_0 with $\hat{R} > R$ until \hat{R} is equal to R^{h+1} , set h = 0 and repeat

1. compute \mathbf{F}_{h+1} the basis of

$$\mathcal{F}_{h+1} = \mathbb{K}^R \otimes \mathcal{E}_h$$

by a Kronecker product between the identity of order R and \mathbf{E}_h the basis of \mathcal{E}_h ; 2. compute \mathbf{E}_{h+1} the basis of

$${\mathcal E}_{h+1} = {\mathcal F}_{h+1} \cap {\sf vec} ({\sf Sym}_R^{(h+1)+2})$$

by symmetrizing the columns of \mathbf{F}_{h+1} ;

- 3. orthogonalize \mathbf{E}_{h+1} ;
- 4. check how many of \mathbf{E}_{h+1} columns satisfy the symmetric conditions, updating \hat{R} .

Currently to avoid forming \mathbf{F}_{h+1} and the symmetrizer matrix \mathbf{G}_{h+1}

1. compute C_{h+1} matrix of size $(R\hat{R} \times C_{R+2+h}^{h+2})$ carrying their product information;

Currently to avoid forming \mathbf{F}_{h+1} and the symmetrizer matrix \mathbf{G}_{h+1}

- 1. compute C_{h+1} matrix of size $(R\hat{R} \times C_{R+2+h}^{h+2})$ carrying their product information;
- 2. orthogonalize C_{h+1} ;

Currently to avoid forming \mathbf{F}_{h+1} and the symmetrizer matrix \mathbf{G}_{h+1}

- 1. compute C_{h+1} matrix of size $(R\hat{R} \times C_{R+2+h}^{h+2})$ carrying their product information;
- 2. orthogonalize C_{h+1} ;
- 3. use C_{h+1} as projector to obtain E_{h+1} ;

Currently to avoid forming \mathbf{F}_{h+1} and the symmetrizer matrix \mathbf{G}_{h+1}

- 1. compute C_{h+1} matrix of size $(R\hat{R} \times C_{R+2+h}^{h+2})$ carrying their product information;
- 2. orthogonalize C_{h+1} ;
- 3. use C_{h+1} as projector to obtain E_{h+1} ;

and this steps are repeated until R^{h+1} and \hat{R} coincide.

Currently to avoid forming \mathbf{F}_{h+1} and the symmetrizer matrix \mathbf{G}_{h+1}

- 1. compute C_{h+1} matrix of size $(R\hat{R} \times C_{R+2+h}^{h+2})$ carrying their product information;
- 2. orthogonalize C_{h+1} ;
- 3. use C_{h+1} as projector to obtain E_{h+1} ;

and this steps are repeated until R^{h+1} and \hat{R} coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and orthogonalize just once[†]

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Let \mathbf{E}_{h+1} the basis of \mathcal{E}_{h+1} has size $(R^{h+1} \times R)$, then 1. reshape \mathbf{E}_{h+1} as a $(R^h \times R^2)$ matrix;

- 1. reshape \mathbf{E}_{h+1} as a $(R^h \times R^2)$ matrix;
- 2. compute **R** the R factor from the QR-factorization of \mathbf{E}_{h+1} ;

- 1. reshape \mathbf{E}_{h+1} as a $(R^h \times R^2)$ matrix;
- 2. compute **R** the R factor from the QR-factorization of \mathbf{E}_{h+1} ;
- 3. truncate **R** to size $(R \times R^2)$ matrix;

- 1. reshape \mathbf{E}_{h+1} as a $(R^h \times R^2)$ matrix;
- 2. compute **R** the R factor from the QR-factorization of \mathbf{E}_{h+1} ;
- 3. truncate **R** to size $(R \times R^2)$ matrix;
- 4. reshape **R** as a tensor \mathcal{R} of size $(R \times R \times R)$;

- 1. reshape \mathbf{E}_{h+1} as a $(R^h \times R^2)$ matrix;
- 2. compute **R** the R factor from the QR-factorization of \mathbf{E}_{h+1} ;
- 3. truncate **R** to size $(R \times R^2)$ matrix;
- 4. reshape **R** as a tensor \mathcal{R} of size $(R \times R \times R)$;
- 5. compute the CPD of \mathcal{R} getting the factor **C** of size $(R \times R)$.

currently use Jenrich's algorithm, based on GEVD[†];

- currently use Jenrich's algorithm, based on GEVD[†];
- use an optimization based CPD algorithm;

- currently use Jenrich's algorithm, based on GEVD[†];
- use an optimization based CPD algorithm;
- use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

- currently use Jenrich's algorithm, based on GEVD[†];
- use an optimization based CPD algorithm;
- use an Generalized EigenSpace based CPD algorithm Evert E. 2020;
- try to preserve (partially)-symmetric properties and tune CPD algorithm.

Overview

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition From the theorem to the algorithm Algorithm outline Computational challenges **Q** construction Intersection shrinking Symmetric CPD Conclusion

Current state

Blind Source Separation problem;

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;
- designed a first implementation;

Current state

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;
- designed a first implementation;

Work in progress

Current state

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;
- designed a first implementation;

Work in progress

- using matrix structure in the computation of Q;
 - exterior algebra could be a tool
 - Gram matrix doesn't seem to be beneficial

Current state

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;
- designed a first implementation;

Work in progress

- using matrix structure in the computation of Q;
 - exterior algebra could be a tool
 - Gram matrix doesn't seem to be beneficial
- estimate the order of the symmetric tensor to product an auxiliary tensor of proper size;
Summary

Current state

- Blind Source Separation problem;
- conditions that guarantee generic uniqueness;
- conditions transferred from BSS to CPD context;
- outlined a CPD algebraic algorithm;
- designed a first implementation;

Work in progress

- using matrix structure in the computation of Q;
 - exterior algebra could be a tool
 - Gram matrix doesn't seem to be beneficial
- estimate the order of the symmetric tensor to product an auxiliary tensor of proper size;
- using the (partially)-symmetric structure into CPD of the auxiliary tensor.

Thank you for the attention! Questions? Advice?

References I

- Beltrán, Carlos, Paul Breiding, and Nick Vannieuwenhoven (Jan. 2019).
 "Pencil-Based Algorithms for Tensor Rank Decomposition are not Stable". In: SIAM J. Matrix Anal. Appl. 40.2, pp. 739–773.
- Comon, P. and C. Jutten (2009). Handbook of blind source separation: Independent component analysis and applications. Academic press.
- Domanov, I. and L. De Lathauwer (July 2013). "On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: Basic results and uniqueness of one factor matrix". In: SIAM J. Matrix Anal. Appl. 34.3, pp. 855–875.
- (June 2016). "Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation". In: IEEE J. Sel. Topics Signal Process. 10.4, pp. 701–711.

References II

Evert E. Vandecappelle M., De Lathauwer L. (2020). A recursive eigenspace computation for the canonical polyadic decomposition. Tech. rep. 20-80. Leuven, Belgium: ESAT-STADIUS, KU Leuven.