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Constraints for uniqueness

Let X be a matrix

Definition: a deterministic condition of X is a particular matrix property which is
always true.

Definition: a generic condition of X depends on a parameter z ∈ Ω and holds almost
everywhere, i.e., if Σ is the set of z values for which the condition doesn’t hold, then
µ(Σ) = 0 where µ is a measure absolute continuous w.r.t. the Lebesgue one.
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Deterministic conditions
Statistical independence → Independent Component Analysis;

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization;

X = M ST
+ +

Sparsity → Sparse Component Analysis;

X = M ST
Max0

...

[Comon and Jutten 2009]
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General case

X M ST=

X M G G−1 ST=

X M1 ST
1

Uniqueness isn’t guaranteed!
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Problem statement

X =
m1

s1
+ · · · +

mR

sR

X =
R∑

r=1
mr (z) ⊗ sr (z)

where
z ∈ Ω a subset of Rn;

mr (z) are linearly independent;
each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ;
each sr (ξr ) has the structure

s(ξr ) =
[

p1
q1

◦ f(ξr ) . . . pN
qN

◦ f(ξr )
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.
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Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2


 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;

the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te];

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2 f is the identity
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A cookbook recipe for generic uniqueness [Domanov and De Lathauwer 2016]

Let t(x) =
[

p1
q1

(x) . . . pN
qN

(x)
]T

for x ∈ Θ = {x ∈ Cℓ : q1(x) · · · qN(x) ̸= 0}, if

1. rankM(z) = R for a generic choice of z;
2. each fh is the ratio of two analytical functions on Cℓ;
3. there exists ξ0 ∈ Cℓ s.t. detJ(f, ξ0) ̸= 0;
4. the dimension of the span of t(x) for x ∈ Θ is at least N̂;
5. rankJ(t, x) > ℓ̂ for a generic choice of z;
6. R ≤ N̂ − ℓ̂;

then

X =
R∑

r=1
mr (z) ⊗ s(ξr )

is generically unique.
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Remarks for BSS

It is assumed that the columns of S are values of the rational function

t : x →
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}K

k=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
13
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Link with the CPD
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br ) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

15
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Algebraic algorithm: high view
Let X be a (I × J × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br ) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 from X;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR ] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.

17
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Equivalent condition I
c is a column of C−1 if and only if XT c is equal to a column of (A ⊙ B)

XT c = (xT
1 c, . . . , xT

N c) = (z1, . . . , zN) ∈ V

Pk(xT
1 c, . . . , xT

N c) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N )(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N ) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.

18
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Equivalent condition II
c is a column of C−1 if and only if XT c is equal to a column of A ⊙ B

P⊗
k (xT

1 , . . . , xT
N )(c ⊗ · · · ⊗ c) = 0 for k = 1, . . . , K

Qvec(c⊗d) =

P⊗
1 (xT

1 , . . . , xT
N )

...
P⊗

K (xT
1 , . . . , xT

N )

 vec(c ⊗ · · · ⊗ c) = 0

The columns of C−1 belong to the intersection of Q kernel and vec(SymN
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Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;

1.1 compute Q;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C by a CPD of {c⊗d

1 , . . . , c⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R )

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.
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Numerical and computational obstacles

Computational complexity: large and structured objects;

NP-hardness;
Numerical conditioning and stability;

Work in progress

Advice is welcome!
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Q for CPD [Domanov and De Lathauwer 2013]
Let X be an order-3 tensor of dimension (I × J × R), then

XR

X1I

J

K

Definition: Q is a C2
I C2

J × C2
R+1 matrix whose k-th column can be written as

Q(·, k) = vec
(
C2(Xk1 + Xk2) − C2(Xk1) − C2(Xk2)

)
where

(k1, k2) is the k-th element of Q2
R = {(k1, k2) : 1 ≤ k1 ≤ k2 ≤ R};

C2
N is the binomial of N over 2;

C2(Xh) is the matrix with the determinants of every 2 × 2 minors of Xh.
25



Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q =
[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1));
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2));
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2)).

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3


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Possible choices

Ignore structure and compute Q by its definition;

Use structure and compute QT Q;
Use structure and compute Q;

All options present limitations!
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Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.
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Structure highlight
Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
.

The matrix Q is

Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3

 .

We can remark that
the entries of α1 appears† in a1aT

2 − a2aT
1

the entries of β1 appears† in b1bT
2 − b2bT

1
the entries of γ1 − (α1 + β1) appears† in a1bT

2 + b1aT
2 − bT

2 a1 − a2bT
1

† twice with opposite sign
29
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Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0

 .

The matrix a ∧ b has the properties:

the diagonal entries are zeros;
it is skew-symmetric;
the elements highlighted are the entries of C2([a b]).
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Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed

⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Gram matrix formulation

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior and exploiting the structure.

Q is not explicitly constructed
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X .

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2)+tr(Ah1k2)tr(Ah2k1)− tr(AT
h1k1Ah1k2)− tr(AT

h1k2Ah2k1)

where Ahi kj = XT
hi

Xkj for hi ≤ kj .

31



Computational complexity
Let X be a (I × J × R) tensor of rank R
Direct construction: the matrix Q has size (C2

I C2
J × C2

R+1)

each entry requires two multiplications;
the total number of entries is

(
IJR(I − 1)(J − 1)(R + 1)

)
/8;

assuming that R ∼ IJ , then the computational complexity is R4/4.

Gram construction: the matrix QT Q has size (C2
R+1 × C2

R+1)
Let ahi ,kj = vec

(
Ahi ,kj

)
= vec

(
XT

hi
Xkj

)
be a vector of length J2, then

tr
(
AT

hi ,kj
Akℓ,hm

)
= aT

hi ,kj
akℓ,hm ;

compute aT
hi ,kj

akℓ,hm require J2 multiplications;
the total number of inner product to compute is C2

N+1 with N = C2
R+1;

assuming that J ∼
√

R, then the computational complexity is R5/8.
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Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Numerical evidences
Given an input random tensor X of dimensions (I × I × R) such that its rank is

R = (I − 1)2

Size Q QT Q
det recursive

(11, 11, 100) 1.364e+01 1.556e+00 7.373e-01
(12, 12, 121) 2.876e+01 3.613e+00 1.621e+00
(13, 13, 144) 5.814e+01 6.353e+00 3.477e+00
(14, 14, 169) 1.071e+02 1.130e+01 6.928e+00
(15, 15, 196) 1.937e+02 1.956e+01 8.954e+01
(16, 16, 225) 3.298e+02 3.291e+01 9.325e+02

Table: Time estimates in seconds for computing Q and its Gram matrix.

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
33



Possible new direction

Combining the two approaches

constructing Q benefiting from Q structure

develop† a more convenient matrix-vector product, using Q structure.

† possibly based on the exterior product
34



Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

Algorithm outline

Computational challenges

Q construction

Intersection shrinking

Symmetric CPD

Conclusion
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Intersection shrinking

Once Q † is computed, the intersection subspace

E0 = null(Q) ∩ vec(SymN
R )

has to be computed, cheking its dimension:
if dim E0 = R, then the algorithm proceed;
if dim E0 > R, then the intersection is shrinked, computing Eh+1 such that

Eh+1 = (KR ⊗ Eh) ∩ vec(SymN+h
R )

until dim Eh+1 = Rh+1 and then proceed.

or its Gram matrix QT Q.
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E0 basis
If Q the (M × N) is matrix whose kernel is needed with M = C2

I C2
J and N = C2

R+1

1. compute the SVD as Q = UΣVT ;
2. define m ∈ N such that σm is the last singular value larger than (ε max{M, N});
3. define the basis of null(Q) as F0 = [vm+1, . . . , vN ] with vℓ the ℓ-th column of V
4. define the basis of the intersection subspace

E0 = null(Q) ∩ vec(SymN
R )

as E0 = G0F0 where the matrix G0 has size (R2 × N) and comes from the
symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m

5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.
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symmetrization of the canonical basis of order-2 tensors of size (R × R);

5. compute R̂ the dimension of the intersection as R̂ = N − m
5.1 if R̂ is equal to R, then reshape E0 as a (R × R × R) and compute its CPD;
5.2 if R̂ is not equal to R, then shrink the intersection until R̂ = Rh+1.
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Eh+1 basis
If the matrix E0 of size (R2 × R̂) span the intersection subspace E0 with R̂ > R
until R̂ is equal to Rh+1, set h = 0 and repeat

1. compute Fh+1 the basis of
Fh+1 = KR ⊗ Eh

by a Kronecker product between the identity of order R and Eh the basis of Eh;
2. compute Eh+1 the basis of

Eh+1 = Fh+1 ∩ vec
(
Sym(h+1)+2

R
)

by symmetrizing the columns of Fh+1;
3. orthogonalize Eh+1;
4. check how many of Eh+1 columns satisfy the symmetric conditions, updating R̂.
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Possible tool

Currently to avoid forming Fh+1 and the symmetrizer matrix Gh+1

1. compute Ch+1 matrix of size (RR̂ × Ch+2
R+2+h) carrying their product information;

2. orthogonalize Ch+1;
3. use Ch+1 as projector to obtain Eh+1;

and this steps are repeated until Rh+1 and R̂ coincide.

Study theoretically the enlargement-shrinking process to estimate m a priori and
orthogonalize just once†

or design an heuristic method
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Auxiliary CPD: current state

Let Eh+1 the basis of Eh+1 has size (Rh+1 × R), then

1. reshape Eh+1 as a (Rh × R2) matrix;
2. compute R the R factor from the QR-factorization of Eh+1;
3. truncate R to size (R × R2) matrix;
4. reshape R as a tensor R of size (R × R × R);
5. compute the CPD of R getting the factor C of size (R × R).
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Possible tool

currently use Jenrich’s algorithm, based on GEVD†;

use an optimization based CPD algorithm;

use an Generalized EigenSpace based CPD algorithm Evert E. 2020;

try to preserve (partially)-symmetric properties and tune CPD algorithm.

† problematic numerical stability Beltrán, Breiding, et al. 2019.
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Summary
Current state

Blind Source Separation problem;

conditions that guarantee generic uniqueness;
conditions transferred from BSS to CPD context;
outlined a CPD algebraic algorithm;
designed a first implementation;

Work in progress
using matrix structure in the computation of Q;

exterior algebra could be a tool
Gram matrix doesn’t seem to be beneficial

estimate the order of the symmetric tensor to product an auxiliary tensor of
proper size;
using the (partially)-symmetric structure into CPD of the auxiliary tensor.
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Thank you for the attention!
Questions? Advice?
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