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Blind Source Separation problem
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X M ST=

Known Unknown Unknown
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Constraints for uniqueness

Definition: A deterministic condition on X imposes a particular property of X that is
always true.

Definition: A generic condition on X depending on a parameter z ∈ Ω holds almost
everywhere, i.e., if the condition doesn’t hold for z ∈ Σ ⊂ Ω, then µ(Σ) = 0 with µ a
measure absolute continuous w.r.t. the Lebesgue one.
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Deterministic conditions
Statistical independence → Independent Component Analysis

X = M ST
Ind

Nonnegativity → Nonnegative Matrix Factorization

X = M ST
+ +

Sparsity → Sparse Component Analysis

X = M ST
Max0

...

[Comon and Jutten 2009]
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General case

X M ST=

X M A A−1 ST=

X M1 ST
1

Uniqueness isn’t guaranteed!
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Problem statement

X =
m1

s1
+ · · · +

mR

sR

X = M(z)ST (z) =
R∑

r=1
mr (z) ⊗ s(ξr )

where
z ∈ Ω a subset of Rn

mr (z) are linearly independent
each sr (z) depends on ℓ independent parameters, entries of ξr ∈ Rℓ

each sr (z) = sr (ξr ) has the structure

s(ξr ) =
[

p1
q1

◦ f(ξr ) . . . pN
qN

◦ f(ξr )
]

with ph, qh polynomials and f = [f1, . . . , fℓ] a vectorial function.
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Example

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

=
8 1 6
3 5 7
4 9 2


 ×

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

Given the observed mixtures, we assume that
the mixture matrix M is constant and full rank;
the source signals can be modeled by rational functions, i.e., the columns of S are
sampled of

s(t) = a0 + a1t + · · · + aptp

b0 + b1t + · · · + bqtq with ai , bi ∈ R, t ∈ [tb, te]

ξ = [a0, . . . , ap, b0, . . . , bq] ℓ = p + q + 2 f is the identity
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A cookbook recipe for generic uniqueness [Domanov and De Lathauwer 2016]

Let t(x) =
[

p1
q1

(x) . . . pN
qN

(x)
]T

for x ∈ Θ = {x ∈ Cℓ : q1(x) · · · qN(x) ̸= 0}, if
1. rankM(z) = R for a generic choice of z
2. each fh is the ratio of two analytical functions on Cℓ

3. there exists ξ0 ∈ Cℓ s.t. detJ(f, ξ0) ̸= 0
4. the dimension of the span of t(x) for x ∈ Θ is at least N̂
5. rankJ(t, x) > ℓ̂ for a generic choice of z
6. R ≤ N̂ − ℓ̂

then

X =
R∑

r=1
mr (z) ⊗ s(ξr )

is generically unique.
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Remarks for BSS

It is assumed that the columns of S are values of the rational function

t : x →
[

p1
q1

(x) . . . pN
qN

(x)
]T

.

The columns of S belong to an algebraic variety V which is described by a finite
system of polynomials {Pk}K

k=1

V =
{

(z1, . . . , zN) ∈ CN : Pk(z1, . . . , zN) = 0
}

.

Composed with the function f
13



Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

The bottleneck

Algorithm improvements

Exterior algebra

Numerical results

14



Link with the CPD
X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

X(1) = a1 ⊗ (b1 ⊗k c1)T + . . . + aR ⊗ (bR ⊗k cR)T

X(1) =
a1

b1 ⊗k c1 + · · · +
aR

bR ⊗k cR

(br ⊗k cr ) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}
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Algebraic algorithm outline

X M ST=

Known Unknown Unknown

1. compute M−1 from X;
2. compute S as M−1X transposed
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Equivalent condition I
a is a column of M−1 if and only if XT a is equal to a column of S

XT a = (xT
1 a, . . . , xT

N a) = (z1, . . . , zN) ∈ V

Pk(xT
1 a, . . . , xT

N a) = 0 for k = 1, . . . , K

P⊗
k (xT

1 , . . . , xT
N )(a ⊗ · · · ⊗ a) = 0 for k = 1, . . . , K

where P⊗
k (xT

1 , . . . , xT
N ) is the vector obtained by formal substitution of (z1, . . . , zN) by

xT
1 , . . . , xT

N and the scalar multiplication by the tensor product.
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Equivalent condition II
a is a column of M−1 if and only if XT a is equal to a column of S

P⊗
k (xT

1 , . . . , xT
N )(a ⊗ · · · ⊗ a) = 0 for k = 1, . . . , K

Qvec(a⊗p ) =

P⊗
1 (xT

1 , . . . , xT
N )

...
P⊗

K (xT
1 , . . . , xT

N )

 vec(a ⊗ · · · ⊗ a) = 0

The columns of M−1 belong to the intersection of Q kernel and the subspace of
vectorized order p symmetric tensors.
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Algebraic algorithm outline

X M ST=

Known Unknown Unknown

1. compute M−1 from X;
1.1 compute Q;
1.2 compute null(Q) intersected with the space of vectorized symmetric tensors;

2. compute S as M−1X transposed.
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Q for CPD [Domanov and De Lathauwer 2013]
Let X be an order-3 tensor of dimension (I × J × K ), then

XK

X1I

J

K

Definition: Q is a C2
I C2

J × C2
K+1 matrix whose k-th column can be written as

Q(·, k) = vec
(
C2(Xk1 + Xk2) − C2(Xk1) − C2(Xk2)

)
where

(k1, k2) is the k-th element of Q2
K = {(k1, k2) : 1 ≤ k1 ≤ k2 ≤ K};

C2
N is the binomial of N over 2;

C2(Xh) is the matrix with the determinants of every 2 × 2 minors of Xh.
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Example
Let X be an order-3 tensor of dimension (I × 3 × 2) such that

X1 =
[
a1 a2 a3

]
and X2 =

[
b1 b2 b3

]
The matrix Q =

[
q1 q2 q3

]
associated with X slices is such that

q1 = vec(C2(X1 + X1) − C2(X1) − C2(X1)) = 2vec(C2(X1))
q2 = vec(C2(X1 + X2) − C2(X1) − C2(X2))
q3 = vec(C2(X2 + X2) − C2(X2) − C2(X2)) = 2vec(C2(X2))

The compound matrices are

C2(X1) =
[
α1 α2 α3

]
C2(X2) =

[
β1 β2 β3

]
C2(X1 + X2) =

[
γ1 γ2 γ3

] Q =

2α1 γ1 − (α1 + β1) 2β1
2α2 γ2 − (α2 + β2) 2β2
2α3 γ3 − (α3 + β3) 2β3


23



Overview
The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

The bottleneck

Algorithm improvements

Exterior algebra

Numerical results

24



Exterior algebra and C2
Definition: The exterior product ∧ : RI × RJ → RI×J is defined as

a ∧ b = abT − baT .

Example
Let aT =

[
a b c

]
and bT =

[
d e f

]
be two vectors, then

a ∧ b =

 0 ae − bd af − cd
−ae + bd 0 bf − ce
−af + cd −bf + ce 0


The matrix a ∧ b has the properties:

the diagonal entries are zeros;
it is skew-symmetric;
the elements highlighted are the entries of C2([a b]);
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Algebraic algorithm optimization steps

Property:
〈
vec(C2([a b])), vec(C2([a b]))

〉
= 2

〈
vec(a ∧ b), vec(a ∧ b)

〉
= 4||a||2||b||2 − ⟨a, b⟩2

Idea: Using the exterior product to improve the algebraic algorithm.

Q is not explicitly constructed
null(Q) = null(QT Q)
⟨qk , qh⟩ = ⟨vec(C2(Y)), vec(C2(Z))⟩ with Y, Z slices or a linear combination of
slices of the input tensor X

Pre-compute Ahi kj = XT
hi

Xkj for hi ≤ kj
Unified formula for QT Q

⟨qk , qh⟩ = tr(Ah1k1)tr(Ah2k2) + tr(Ah1k2)tr(Ah2k1) − tr(AT
h1k1Ah1k2) − tr(AT

h1k2Ah2k1)
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Preliminary numerical results (work in progress)

Given an input random tensor X of dimensions (I × J × K ) such that its rank is

R = I = (J − 1)(K − 1)

dimensions rank naive smart
CPU time err CPU time err

20 × 5 × 6 R = 20 1.089e−01s 5.518e−13 8.353e−03s 5.009e−13
24 × 5 × 7 R = 24 7.600e−02s 9.949e−08 4.408e−03s 1.026e−07
25 × 6 × 6 R = 25 8.977e−02s 4.656e−07 5.223e−03s 5.689e−07
28 × 5 × 8 R = 28 1.400e−01s 1.849e−11 9.695e−03s 1.601e−11
30 × 6 × 7 R = 30 3.538e−01s 2.214e−11 2.236e−02s 8.866e−12

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.
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Conclusive remarks

conditions that guarantee generic uniqueness;

from the theorem structure to a CPD algorithm;

bottleneck due to compound matrices;

optimization based on the exterior product.
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Thank you for the attention!
Questions?
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