An algebraic algorithm for blind source separation and tensor decomposition

Martina Iannacito

joint work with Ignat Domanov and Lieven De Lathauwer

METT X Aachen, Germany, September 14, 2023

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

Blind Source Separation problem

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

Definition: A *deterministic* condition on X imposes a particular property of X that is always true.

Definition: A generic condition on **X** depending on a parameter $z \in \Omega$ holds almost everywhere, i.e., if the condition doesn't hold for $z \in \Sigma \subset \Omega$, then $\mu(\Sigma) = 0$ with μ a measure absolute continuous w.r.t. the Lebesgue one.

Deterministic conditions

 \blacksquare Statistical independence \rightarrow Independent Component Analysis

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{T}_{\mathbf{Ind}}$$

 \blacksquare Nonnegativity \rightarrow Nonnegative Matrix Factorization

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{+}}$$

 $\blacksquare \ Sparsity \rightarrow Sparse \ Component \ Analysis$

$$\mathbf{X} = \mathbf{M} \mathbf{S}^{\mathsf{T}}_{\mathsf{Max0}}$$

. . . .

General case

Uniqueness isn't guaranteed!

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

Constraints for uniqueness

Definition: A *deterministic* condition on X imposes a particular property of X that is always true.

Definition: A generic condition on **X** depending on a parameter $\mathbf{z} \in \Omega$ holds almost everywhere, i.e., if the condition doesn't hold for $\mathbf{z} \in \Sigma \subset \Omega$, then $\mu(\Sigma) = 0$ with μ a measure absolute continuous w.r.t. the Lebesgue one.

Problem statement

$$\mathbf{X} = \mathbf{M}(\mathbf{z})\mathbf{S}^{\mathcal{T}}(\mathbf{z}) = \sum_{r=1}^{R} \mathbf{m}_{r}(\mathbf{z}) \otimes \mathbf{s}(\boldsymbol{\xi}_{r})$$

where

•
$$\mathsf{z} \in \Omega$$
 a subset of \mathbb{R}'

- **m** $_r(z)$ are linearly independent
- each $\mathbf{s}_r(\mathbf{z})$ depends on ℓ independent parameters, entries of $\boldsymbol{\xi}_r \in \mathbb{R}^\ell$
- each $\mathbf{s}_r(\mathbf{z}) = \mathbf{s}_r(\boldsymbol{\xi}_r)$ has the structure

$$\mathbf{s}(\boldsymbol{\xi}_r) = \begin{bmatrix} rac{p_1}{q_1} \circ \mathbf{f}(\boldsymbol{\xi}_r) & \dots & rac{p_N}{q_N} \circ \mathbf{f}(\boldsymbol{\xi}_r) \end{bmatrix}$$

with p_h, q_h polynomials and $\mathbf{f} = [f_1, \ldots, f_\ell]$ a vectorial function.

Example

Given the observed mixtures, we assume that

- the mixture matrix M is constant and full rank;
- the source signals can be modeled by rational functions, i.e., the columns of S are sampled of

$$s(t) = \frac{a_0 + a_1 t + \dots + a_p t^p}{b_0 + b_1 t + \dots + b_q t^q} \quad \text{with} \quad a_i, b_i \in \mathbb{R}, \quad t \in [t_b, t_e]$$

• $\boldsymbol{\xi} = [a_0, \dots, a_p, b_0, \dots, b_q]$ • $\ell = p + q + 2$ • f is the identity

A cookbook recipe for generic uniqueness

Let
$$\mathbf{t}(\mathbf{x}) = \begin{bmatrix} \frac{p_1}{q_1}(\mathbf{x}) & \dots & \frac{p_N}{q_N}(\mathbf{x}) \end{bmatrix}^T$$
 for $\mathbf{x} \in \Theta = \{\mathbf{x} \in \mathbb{C}^\ell : q_1(\mathbf{x}) \cdots q_N(\mathbf{x}) \neq 0\}$, if

- 1. rank $\mathbf{M}(z) = R$ for a generic choice of \mathbf{z}
- 2. each f_h is the ratio of two analytical functions on \mathbb{C}^ℓ
- 3. there exists $\pmb{\xi}_0\in\mathbb{C}^\ell$ s.t. det $\textbf{J}(\textbf{f},\pmb{\xi}_0)
 eq 0$
- 4. the dimension of the span of $\mathbf{t}(\mathbf{x})$ for $x \in \Theta$ is at least \hat{N}
- 5. rank $\mathbf{J}(\mathbf{t}, \mathbf{x}) > \hat{\ell}$ for a generic choice of **z** 6. $R \leq \hat{N} - \hat{\ell}$

then

$$\mathbf{X} = \sum_{r=1}^{R} \mathbf{m}_r(\mathbf{z}) \otimes \mathbf{s}(\boldsymbol{\xi}_r)$$

is generically unique.

Remarks for BSS

It is assumed that the columns of $\boldsymbol{\mathsf{S}}$ are values of the rational function

$$\mathbf{t}:\mathbf{x}
ightarrow egin{bmatrix}rac{p_1}{q_1}(\mathbf{x}) & \dots & rac{p_N}{q_N}(\mathbf{x})\end{bmatrix}^T.$$

The columns of **S** belong to an algebraic variety \mathcal{V} which is described by a finite system of polynomials $\{P_k\}_{k=1}^{K}$

$$\mathcal{V} = \Big\{(z_1,\ldots,z_N) \in \mathbb{C}^N : P_k(z_1,\ldots,z_N) = 0\Big\}.$$

Composed with the function \boldsymbol{f}

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm The bottleneck Algorithm improvements

Exterior algebra

Numerical results

Link with the CPD

 $\mathcal{X} = \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1 + \ldots + \mathbf{a}_R \otimes \mathbf{b}_R \otimes \mathbf{c}_R$

$$\mathbf{X}^{(1)} = \mathbf{a}_{1} \otimes (\mathbf{b}_{1} \otimes_{\mathrm{K}} \mathbf{c}_{1})^{T} + \ldots + \mathbf{a}_{R} \otimes (\mathbf{b}_{R} \otimes_{\mathrm{K}} \mathbf{c}_{R})^{T}$$
$$= \boxed{\mathbf{b}_{1} \otimes_{\mathrm{K}} \mathbf{c}_{1}}_{\mathbf{a}_{1}} + \cdots + \boxed{\mathbf{b}_{R} \otimes_{\mathrm{K}} \mathbf{c}_{R}}_{\mathbf{a}_{R}}$$
$$(\mathbf{b}_{r} \otimes_{\mathrm{K}} \mathbf{c}_{r}) \in \mathcal{V} = \left\{ \operatorname{vec}(\mathbf{Z}) : \begin{vmatrix} z_{i_{1}j_{1}} & z_{i_{1}j_{2}} \\ z_{i_{2}j_{1}} & z_{i_{2}j_{2}} \end{vmatrix} = 0 \right\}$$

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

The Canonical Polyadic Decomposition

From the theorem to the algorithm

The bottleneck

Algorithm improvements

Exterior algebra

Numerical results

Algebraic algorithm outline

- 1. compute M^{-1} from X;
- 2. compute **S** as $M^{-1}X$ transposed

Equivalent condition I

a is a column of \mathbf{M}^{-1} if and only if $\mathbf{X}^{T}\mathbf{a}$ is equal to a column of **S**

$$\mathbf{X}^{T} \mathbf{a} = (\mathbf{x}_{1}^{T} \mathbf{a}, \dots, \mathbf{x}_{N}^{T} \mathbf{a}) = (z_{1}, \dots, z_{N}) \in \mathcal{V}$$

$$\widehat{\mathbf{v}}$$

$$P_{k}(\mathbf{x}_{1}^{T} \mathbf{a}, \dots, \mathbf{x}_{N}^{T} \mathbf{a}) = 0 \text{ for } k = 1, \dots, K$$

$$\widehat{\mathbf{v}}$$

$$P_{k}^{\otimes}(\mathbf{x}_{1}^{T}, \dots, \mathbf{x}_{N}^{T})(\mathbf{a} \otimes \dots \otimes \mathbf{a}) = 0 \text{ for } k = 1, \dots, K$$

where $P_k^{\otimes}(\mathbf{x}_1^T, \dots, \mathbf{x}_N^T)$ is the vector obtained by formal substitution of (z_1, \dots, z_N) by $\mathbf{x}_1^T, \dots, \mathbf{x}_N^T$ and the scalar multiplication by the tensor product.

Equivalent condition II

a is a column of \mathbf{M}^{-1} if and only if $\mathbf{X}^{T}\mathbf{a}$ is equal to a column of **S** $P_{k}^{\otimes}(\mathbf{x}_{1}^{T},\ldots,\mathbf{x}_{N}^{T})(\mathbf{a}\otimes\cdots\otimes\mathbf{a})=0$ for $k=1,\ldots,K$ $\mathbf{Q} \operatorname{vec}(\mathbf{a}^{\otimes_{p}}) = \begin{bmatrix} P_{1}^{\otimes}(\mathbf{x}_{1}^{T}, \dots, \mathbf{x}_{N}^{T}) \\ \vdots \\ P_{\infty}^{\otimes}(\mathbf{x}_{1}^{T}, \dots, \mathbf{x}_{N}^{T}) \end{bmatrix} \operatorname{vec}(\mathbf{a} \otimes \dots \otimes \mathbf{a}) = 0$

The columns of M^{-1} belong to the intersection of Q kernel and the subspace of vectorized order p symmetric tensors.

Algebraic algorithm outline

- 1. compute M^{-1} from X;
 - 1.1 compute \mathbf{Q} ;
 - 1.2 compute $null(\mathbf{Q})$ intersected with the space of vectorized symmetric tensors;
- 2. compute **S** as $\mathbf{M}^{-1}\mathbf{X}$ transposed.

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

 ${\bf Q}$ for CPD

[Domanov and De Lathauwer 2013]

Let \mathcal{X} be an order-3 tensor of dimension $(I \times J \times K)$, then

Definition: **Q** is a $C_I^2 C_J^2 \times C_{K+1}^2$ matrix whose k-th column can be written as $\mathbf{Q}(\cdot, k) = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_{k_1} + \mathbf{X}_{k_2}) - \mathcal{C}_2(\mathbf{X}_{k_1}) - \mathcal{C}_2(\mathbf{X}_{k_2}))$

where

•
$$(k_1, k_2)$$
 is the *k*-th element of $Q_K^2 = \{(k_1, k_2) : 1 \le k_1 \le k_2 \le K\};$

- C_N^2 is the binomial of N over 2;
- $C_2(\mathbf{X}_h)$ is the matrix with the determinants of every 2 × 2 minors of \mathbf{X}_h .

Example

Let \mathcal{X} be an order-3 tensor of dimension $(I \times 3 \times 2)$ such that

$$\mathbf{X}_1 = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$$
 and $\mathbf{X}_2 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$

The matrix $Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$ associated with \mathcal{X} slices is such that

 $\mathbf{q}_1 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_1)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1))$

$$\mathbf{q}_2 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_1 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_1) - \mathcal{C}_2(\mathbf{X}_2))$$

 $\mathbf{q}_3 = \operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2 + \mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2) - \mathcal{C}_2(\mathbf{X}_2)) = 2\operatorname{vec}(\mathcal{C}_2(\mathbf{X}_2))$

The compound matrices are

$$\square \qquad \mathbf{Q} = \begin{bmatrix} 2\alpha_1 & \gamma_1 - (\alpha_1 + \beta_1) & 2\beta_1 \\ 2\alpha_2 & \gamma_2 - (\alpha_2 + \beta_2) & 2\beta_2 \\ 2\alpha_3 & \gamma_3 - (\alpha_3 + \beta_3) & 2\beta_3 \end{bmatrix}$$

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

Exterior algebra and \mathcal{C}_2

Definition: The exterior product $\wedge : \mathbb{R}^I \times \mathbb{R}^J \to \mathbb{R}^{I \times J}$ is defined as

$$\mathbf{a} \wedge \mathbf{b} = \mathbf{a} \mathbf{b}^T - \mathbf{b} \mathbf{a}^T.$$

Example

Let
$$\mathbf{a}^T = \begin{bmatrix} a & b & c \end{bmatrix}$$
 and $\mathbf{b}^T = \begin{bmatrix} d & e & f \end{bmatrix}$ be two vectors, then

$$\mathbf{a} \wedge \mathbf{b} = \begin{bmatrix} 0 & ae - bd & af - cd \\ -ae + bd & 0 & bf - ce \\ -af + cd & -bf + ce & 0 \end{bmatrix}$$

The matrix $\boldsymbol{a} \wedge \boldsymbol{b}$ has the properties:

- the diagonal entries are zeros;
- it is skew-symmetric;
- the elements highlighted are the entries of $C_2([\mathbf{a} \ \mathbf{b}])$;

Algebraic algorithm optimization steps

$$\begin{array}{l} \mbox{Property: } \left< \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])), \mbox{vec}(\mathcal{C}_2([\mathbf{a} \quad \mathbf{b}])) \right> = 2 \left< \mbox{vec}(\mathbf{a} \wedge \mathbf{b}), \mbox{vec}(\mathbf{a} \wedge \mathbf{b}) \right> \\ &= 4 ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2 \end{array}$$

Idea: Using the exterior product to improve the algebraic algorithm.

- Q is not explicitly constructed
- **null**(\mathbf{Q}) = null($\mathbf{Q}^T \mathbf{Q}$)
- $\langle \mathbf{q}_k, \mathbf{q}_h \rangle = \langle \text{vec}(\mathcal{C}_2(\mathbf{Y})), \text{vec}(\mathcal{C}_2(\mathbf{Z})) \rangle$ with \mathbf{Y}, \mathbf{Z} slices or a linear combination of slices of the input tensor \mathcal{X}

Pre-compute
$$\mathbf{A}_{h_i k_j} = \mathbf{X}_{h_i}^T \mathbf{X}_{k_j}$$
 for $h_i \leq k_j$

Unified formula for Q^TQ

 $\langle \mathbf{q}_k, \mathbf{q}_h \rangle = \mathsf{tr}(\mathbf{A}_{h_1k_1})\mathsf{tr}(\mathbf{A}_{h_2k_2}) + \mathsf{tr}(\mathbf{A}_{h_1k_2})\mathsf{tr}(\mathbf{A}_{h_2k_1}) - \mathsf{tr}(\mathbf{A}_{h_1k_1}^{\mathsf{T}}\mathbf{A}_{h_1k_2}) - \mathsf{tr}(\mathbf{A}_{h_1k_2}^{\mathsf{T}}\mathbf{A}_{h_2k_1})$

The Blind Source Separation

Deterministic uniqueness

Generic uniqueness

Preliminary numerical results (work in progress)

Given an input random tensor \mathcal{X} of dimensions $(I \times J \times K)$ such that its rank is

$$R=I=(J-1)(K-1)$$

dimensions	rank	naive		smart	
		CPU time	err	CPU time	err
$20 \times 5 \times 6$	R = 20	$1.089\mathrm{e}{-01}\mathrm{s}$	$5.518\mathrm{e}{-13}$	8.353e-03s	$5.009\mathrm{e}{-13}$
$24 \times 5 \times 7$	<i>R</i> = 24	$7.600\mathrm{e}{-02}\mathrm{s}$	$9.949 \mathrm{e}{-08}$	4.408e-03s	$1.026\mathrm{e}{-07}$
25 imes 6 imes 6	R = 25	8.977e-02s	$4.656\mathrm{e}{-07}$	5.223e-03s	$5.689\mathrm{e}{-07}$
$28 \times 5 \times 8$	R = 28	$1.400\mathrm{e}{-01}\mathrm{s}$	$1.849\mathrm{e}{-11}$	9.695e-03s	$1.601\mathrm{e}{-11}$
$30 \times 6 \times 7$	R = 30	$3.538\mathrm{e}{-01}\mathrm{s}$	$2.214\mathrm{e}{-11}$	2.236e-02s	8.866 e - 12

The link between rank and dimensions is meant to satisfy [Domanov and De Lathauwer 2016] theorem.

- conditions that guarantee generic uniqueness;
- from the theorem structure to a CPD algorithm;
- bottleneck due to compound matrices;
- optimization based on the exterior product.

Thank you for the attention! Questions?

References I

- Comon, P. and C. Jutten (2009). Handbook of blind source separation: Independent component analysis and applications. Academic press.
- Domanov, I. and L. De Lathauwer (July 2013). "On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: Basic results and uniqueness of one factor matrix". In: SIAM J. Matrix Anal. Appl. 34.3, pp. 855–875.
- (June 2016). "Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation". In: IEEE J. Sel. Topics Signal Process. 10.4, pp. 701–711.