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Preliminaries – I

Given an (n1 × · · · × nd) tensor X , the possible decompositions are

Tucker decomposition
X = S ×1 U1 · · · ×d Ud where

Uk are orthogonal matrices of size (nk × rk) s.t.
X(k) = UkΣkVT

k k = 1, . . . , d
S is a tensor of size (r1 × · · · × rd) s.t.

S = X ×1 UT
1 · · · ×d UT

d ;
the j = (j1, . . . , jd) element of X is

X (j) =
∑

h S(h)U1(j1, h1) · · ·Ud(jd , hd);
where h = (h1, . . . , hd) for hk = 1, . . . , rk and k = 1, . . . , d .
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Preliminaries – I

Remark
Existing and widely used algorithms to compute the decomposition and approximation at given
ML-rank are HOSVD, T-HOSVD and ST-HOSVD, HOOI.
See [Kolda et al. 2009; Vannieuwenhoven et al. 2012; De Lathauwer, De Moor, et al. 2000a;
De Lathauwer, De Moor, et al. 2000b].
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Preliminaries – II

Given an (n1 × · · · × nd) tensor X , the possible decompositions are

Canonical Polyadic Decomposition
Assuming X has rank R, its CPD is

X =
∑R

k=1 x(1)
k ⊗ · · · ⊗ x(d)

k

where x(k)
h is a vector of length nk . The j = (j1, . . . , jd) element of X is

X (j) =
∑R

k=1 x(1)
k (j1) · · · x(d)

k (jd);

Remark
Existing and widely used algorithms to compute the decomposition and approximation at given
a target rank are CPD-ALS and CPD-GEVD.
See [Kolda et al. 2009; De Lathauwer 2006].

Martina Iannacito Tensor-Train December 12, 2024 2 / 55



Preliminaries – II

Given an (n1 × · · · × nd) tensor X , the possible decompositions are

Canonical Polyadic Decomposition
Assuming X has rank R, its CPD is

X =
∑R

k=1 x(1)
k ⊗ · · · ⊗ x(d)

k

where x(k)
h is a vector of length nk . The j = (j1, . . . , jd) element of X is

X (j) =
∑R

k=1 x(1)
k (j1) · · · x(d)

k (jd);

Remark
Existing and widely used algorithms to compute the decomposition and approximation at given
a target rank are CPD-ALS and CPD-GEVD.
See [Kolda et al. 2009; De Lathauwer 2006].

Martina Iannacito Tensor-Train December 12, 2024 2 / 55



Preliminaries – II

Given an (n1 × · · · × nd) tensor X , the possible decompositions are

Canonical Polyadic Decomposition
Assuming X has rank R, its CPD is

X =
∑R

k=1 x(1)
k ⊗ · · · ⊗ x(d)

k

where x(k)
h is a vector of length nk . The j = (j1, . . . , jd) element of X is

X (j) =
∑R

k=1 x(1)
k (j1) · · · x(d)

k (jd);

Remark
Existing and widely used algorithms to compute the decomposition and approximation at given
a target rank are CPD-ALS and CPD-GEVD.
See [Kolda et al. 2009; De Lathauwer 2006].

Martina Iannacito Tensor-Train December 12, 2024 2 / 55



Pro and cons

Tucker decomposition
+ Always possible to compute it;
− Not unique ⇒ not a unique interpretation of data
− Storage cost depends exponentially on the order d , i.e. O(dnr + rd)

CPD decomposition
+ Unique∗ ⇒ unique interpretation of data
+ Storage cost depends linearly on the order d , i.e. O(dnR)
− NP-hard in general to find the true decomposition

assuming n = max{nk} and r = max{rk}

Question
Does a mid-way decomposition technique exist?
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Tensor-Train – I

Given an (n1 × · · · × nd) tensor X ,

Definition [Oseledets 2011]
The TT-decomposition at TT-rank is (r1, . . . , rd) is given by

d − 2 tensors of order 3 and size (rk−1 × nk × rk), Xk for k = 2, . . . , d − 1
2 matrices of size (n1 × r1) and (rd−1 × nd), X1 and Xd .

Remark
With an abuse of notation, we consider X1 and Xd as tensors of order 3 and size
(r0 × n1 × r1) and (rd−1 × nd × rd) with r0 = rd = 1. They are denoted by X1 and Xd .

X1
X2

X3 X4 X5

r1 r2 r3 r4

n1

n2

n3
n4 n5
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Tensor-Train – II

Definition
The tensors Xk are the TT-cores of X .
The jkth slice w.r.t. mode-2 of the kth core, Xk(:, jk , :), is an (rk−1 × rk) matrix denoted by
Xk(jk). The TT-representation of a tensor is called TT-vector.

Given j = (j1, . . . , jd), the jth element of X is

X (j) =
d∑

k=1

rk∑
hk=1
X1(1, j1, h1)X2(h1, j2, h2) · · · Xd(hd−1, jd , 1)

= X1(j1)X2(j2) · · ·Xd(jd).

Compactly, X = X1X2 · · · Xd , with the contraction (i.e., sum over an index) as underlying
operation.
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TT and operators – I

Let A : Rn1×···×nd → Rm1×···×md be a multi-linear operator. By fixing a basis for both vector
space, A can be associated with a tensor A of order 2d and size

(
(m1×n1)×· · ·× (md ×nd)

)
.

Definition [Oseledets 2011]
The TT-decomposition at TT-rank is (r1, . . . , rd) of A is given by

d − 2 tensors of order-4 and size (rk−1 ×mk × nk × r3), Ak for k = 2, . . . , d − 1
2 tensors of order-3 and size (m1 × n1 × r1) and (rd−1 ×md × nd), A1 and Ad .

Remark
A1 and Ad can be seen as order-4 tensors of size (r0 ×m1 × n1 × r1) and
(rd−1 ×md × nd × rd) with r0 = rd = 1.
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TT and operators – II

Definition
The tensors Ak are the TT-cores of A.
The (ik , jk)th slice w.r.t. modes-(2, 3) of the kth core, Ak(:, ik , jk , :) , is an (rk−1 × rk) matrix
denoted by Ak(ik , jk). The TT-representation of a multilinear operator is called TT-matrix

Given i = (i1, . . . , id) ∈ Nm1×···md and j = (j1, . . . , jd) ∈ Nn1×···nd , the (i, j)th element of A is

A(i, j) =
d∑

k=1

rk∑
hk=1
A1(1, i1, j1, h1)A2(h1, i2, j2, h2) · · · Ad(hd−1, id , jd , 1)

= A1(i1, j1)A2(i2, j2) · · ·Ad(id , jd).

Compactly, A = A1A2 · · · Ad , with the contraction as underlying operation.
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Matrix Product States [Östlund et al. 1995; Klümper et al. 1992; Fannes et al. 1992;
Vidal 2003]

The TT-format originated from the quantum physics field, where it is called Matrix
Product States (MPS).
The quantum physicists rely on a visual notation, Tensor Network, to describe MPS/TT
objects (and not only).
In the tensor network, there is

a node with the label of the object
one (or more) output edge with the dimension of the space to which it belong

xn

Remark
We just draw the vector x of length n
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Example of TN – I

the length n vector x is depicted as
xn

the (m × n) matrix A is depicted as

Am n

the (m × n) orthogonal matrix Q is depicted as
Qm n

the (m × n × p) tensor X is depicted as

Xm p

n
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Contraction with TN

TNs allow the representation of standard linear alegbra operations and decomposition.
The inner product between two length n vectors, x and y

⟨x, y⟩ = xTy =
n∑

k=1
x(k)y(k) = ℓ

is depicted joining by an inner edge the node of x and y, i.e.(
xn
)T

yn = x n
)T

yn = x yn = ℓ

Remark
A contraction is depicted by an inner edge joining two nodes. Example of contractions: the
matrix-vector product, the matrix-tensor product, the contraction between tensors...
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Examples of TN contraction – I

the matrix-vector product Ax is depicted as
Am xn = Axm

the QR-decomposition of A is depicted as
Am n = Qm R nr

the SVD decomposition of A is depicted as
Am n = Um Σ VT nr r
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Examples of TN contraction – II

the matrix-tensor product X ×3 C, resulting in Y, is depicted as

Xm

n

C pp = Ym

n

p

the Tucker decomposition of X is depicted as

Xm p

n

= Cr1 r3

r2

U1 U3

U2

m p

n
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TT and TN

The TN-representation of

TT-vector X is

X1

n1

r1 X2

n2

X3
r2

n3

r3 rd−1 Xd

nd

TT-matrix A is

A1

m1

n1

r1 A2

m2

n2

A3
r2

m3

n3

r3 rd−1 Ad

nd

md
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TT-arithmetic – I

Given two TT-vectors, X and Y, of the same size, it can be proven that
Proposition [Oseledets 2011]
The sum TT-vector, Z(j) = X (j) + Y(j), is such that

Z1(j1) =
[
X1(j1) Y1(j1)

]
and Zd(jd) =

[
Xd(jd)
Yd(jd)

]

Zk(jk) =
[
Xk(jk)

Yk(jk)

]

where j = (j1, . . . , jd), jk = 1, . . . , nk and k = 1, . . . , d .
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Proof – I

Let j = (j1, . . . , jd) ∈ Nn1×···×nd , the jth element of Z is

Z(j) = Z1(j1)Z2(j2) · · ·Zd−1(jd−1)Zd(jd)

=
[
X1(j1) Y1(j1)

] [X2(j2)
Y2(j2)

]
· · ·
[
Xd−1(jd−1)

Yd−1(jd−1)

] [
Xd(jd)
Yd(jd)

]
.

By directly multiplying the blocks, we obtain

Z(j) = X1(j1)X2(j2) · · ·Xd(jd) + Y1(j1)Y2(j2) · · ·Yd(jd),

that is the thesis.
Remark
The TT-rank of Z is the sum of the TT-ranks of X and Y. The linear combination of two
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TT-arithmetic – II

Given a TT-vectors, X , and a rank-1 tensor, Y, of the same size, it can be proven that
Lemma [Oseledets 2011]
Their inner product is such that

⟨X ,Y⟩ = zT
1(Z2 · · ·Zd−1zd),

where

z1 =
n1∑

j1=1
y1(j1)X1(j1), zd =

nd∑
jd =1

yd(jd)Xd(jd), and Zk =
nk∑

jk=1
yk(jk)Xk(jk)

for k = 2, . . . , d − 1.
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Proof – II

The inner product between two tensors is ⟨X ,Y⟩ =
∑

jX (j)Y(j). As Y is a rank-1 tensor, it
gets

⟨X ,Y⟩ =
∑

j
X (j)

(
y1 ⊗ · · · ⊗ yd

)
(j) =

d∑
k=1

nk∑
jk=1

X1(j1) · · ·Xd(jd)y1(j1) · · · yd(jd)

=
( n1∑

j1=1
y1(j1)X1(j1)

)
· · ·
( nd∑

jd =1
yd(jd)Xd(jd)

)
.

We recognize the expressions of zh and Zk for h = 1, d and k = 2, . . . , d − 1, that is the
thesis, i. e.,

⟨X ,Y⟩ = ⟨X ,Y⟩ = zT
1(Z2 · · ·Zd−1zd).
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TT-arithmetic – III

Given two TT-vectors, X and Y, of the same size, it can be proven that
Proposition [Oseledets 2011]
define Z(j) = X (j)Y(j). Then

⟨X ,Y⟩ =
∑

j
Z(j) =

∑
j

Z1(j1) · · ·Zd(jd),

where
Zk(jk) = Xk(jk)⊗k Yk(jk) for k = 1, . . . , d .

Remark
The TT-cores of Z are equal to the product of the TT-ranks of X and Y. The TT-cores of Z
can be computed by nd Kronecker products.

Martina Iannacito Tensor-Train December 12, 2024 18 / 55



TT-arithmetic – III

Given two TT-vectors, X and Y, of the same size, it can be proven that
Proposition [Oseledets 2011]
define Z(j) = X (j)Y(j). Then

⟨X ,Y⟩ =
∑

j
Z(j) =

∑
j

Z1(j1) · · ·Zd(jd),

where
Zk(jk) = Xk(jk)⊗k Yk(jk) for k = 1, . . . , d .

Remark
The TT-cores of Z are equal to the product of the TT-ranks of X and Y. The TT-cores of Z
can be computed by nd Kronecker products.

Martina Iannacito Tensor-Train December 12, 2024 18 / 55



Proof – III

Let j = (j1, . . . , jd) ∈ Nn1×···×nd , the jth element of Z is

Z(j) = X (j)Y(j) =
(
X1(j1) · · ·Xd(jd)

)(
Y1(j1) · · ·Yd(jd)

)
.

Notice now that Xd(jd) has size (rd1 × 1) and Y1(j1) has size (1× sd1). Thus, we can make
explicit in the previous equation the Kronecker product, writing

Z(j) =
(
X1(j1) · · ·Xd(jd)

)
⊗K

(
Y1(j1) · · ·Yd(jd)

)
.

Recalling the mixed-product property of the Kronecker product, we can rewrite the previous
equation as

Z(j) =
(
X1(j1)⊗k Y1(j1)

)
· · ·
(
Xd(jd)⊗k Yd(jd)

)
.

that is the thesis.
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TT-arithmetic – IV

Given a TT-vector, X , and a TT-matrix, A, of compatible size, it can be proven that
Proposition [Oseledets 2011]
The contraction TT-vector, Y(i) = A(i, j)X (j) is such that

Yk(ik) =
nk∑

jk=1
Ak(ik , jk)⊗k Xk(jk)

where j = (j1, . . . , jd) and i = (i1, . . . , id), jk = 1, . . . , nk and ik = 1, . . . , mk , k = 1, . . . , d .

Remark
The TT-rank of Y is the product of the TT-ranks of A and X . The contraction between a
TT-matrix and a TT-vector can be obtained by dnm Kronecker products.
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Proof – IV

The ith element of Y is

Y(i) =
∑

j
A(i, j)X (j) =

d∑
k=1

nk∑
hk=1

(
A1(i1, j1) · · ·Ad(id , jd)

)(
X1(j1) · · ·Xd(jd)

)
Notice now that Ad(id , jd) has size (rd1 × 1) and X1(j1) has size (1× sd1). Thus, we can make
explicit in the previous equation the Kronecker product, writing

Y(i) =
d∑

k=1

nk∑
hk=1

(
A1(i1, j1) · · ·Ad(id , jd)

)
⊗k

(
X1(j1) · · ·Xd(jd)

)
.

Recalling the mixed-product property of the Kronecker product and the sum linearity, we can
rewrite the previous equation as Y(i) = Y1(i1) · · ·Yd(id) where

Yk(ik) =
nk∑

jk=1
Ak(ik , jk)⊗k X(jk)

that is the thesis.
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TT pro and cons

+ storage cost linear w.r.t. the tensor order, i.e., O(dnr2);
+ arithmetic ad hoc to perform linear algebra operations;
+ always possible to compute with stable operations the TT-decomposition;
− linear algebra operations increase (significantly) the rank

Further info
suggested reading: Oseledets 2011; Gelß 2017; Orús 2014;
computational packages: TT-Toolbox, TTpy, torchTT, t3f...
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TT-decomposition – I

Let X be an order-d tensor of size (n1 × · · · × nd), and N =
∏d

k=1 nk .

1 X(1) ← reshape
(
X , (n1 ×m1)

)
,

m1 = N/n1
2
[
U1, Σ1, VT

1
]
← SVD(X(1));

3 X1 ← U1, 1st TT-core of size (n1 × r1)

4 E2 ← reshape(Σ1VT
1, (n2r1 ×m2)),

m2 = m1/n2

X(1)
n1 n2 · · · nd

U1
n1 Σ1 VT

1
n2 · · · ndr1 r1

X1
r1

n1

E2
n2r1 n3 · · · nd
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TT-decomposition – II

At the kth step

1
[
Uk , Σk , VT

k
]
← SVD(Ek);

2 Xk ← reshape(Uk , (rk−1 × nk × rk)), kth TT-core

3 Ek+1 ← reshape(ΣkVT
k , (nk+1rk ×mk+1)),

mk+1 = mk/nk

Uk
nk rk−1 Σk VT

k
nk+1 · · · ndrk rk

Xk
rk−1 rk

nk

Ek+1
nk+1rk nk+2 · · · nd
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TT-decomposition – III

At the (d − 1)th step

1
[
Ud−1, Σd−1, VT

d−1
]
← SVD(Ed−1);

2 Xd−1 ← reshape(Ud−1, (rd−2 × nd−1 × rd−1)),
(d − 1)th TT-core

3 Xd ← Σd−1VT
d−1, dth TT-core

Ud−1
nd−1rd−2 Σd−1 VT

d−1
ndrd−1 rd−1

Xd−1
rd−2 rd−1

nd−1

Xd
rd−1

nd
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Algorithm

Algorithm 1: TT-SVD [Oseledets 2011]
Input: an (n1 × · · · × nd) dense tensor X
Output:

{
Xk
}

TT-cores of X
1 m1 = n2 · · · nd , and r0 = 1;
2 E← reshape

(
X , (r0n1 ×m1)

)
;

3 for k = 1, . . . , d − 1 do
4 [Uk , Σk , VT

k ]← SVD
(
E
)
; ▷ rk = rank(E)

5 Xk ← reshape
(
U, (rk−1 × nk × rk)

)
;

6 mk+1 ← mk/nk ;
7 E← reshape(ΣkVT

k , (rknk+1 ×mk+1));
8 Xd ← reshape(E, (rd−1 × nd × rd)) ▷ rd = 1
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TT-SVD quality

Theorem [Oseledets 2011]
Given a tensor, X , the best approximation of X in the Frobenius norm with TT-ranks bounded
by rk always exists, denoted by X ∗.
If Y denotes the TT-decomposition of X computed by the TT-SVD algorithm, Y is
quasi-optimal, i.e.,

||X − Y|| ≤
√

d − 1||X − X ∗||
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TT-SVD and graph

Consider X an (n1 × n2 × n3 × n4 × n5) tensor

{1, 2, 3, 4, 5}

{1} {2, 3, 4, 5}

{2} {3, 4, 5}

{3} {4, 5}

{4} {5}

(n1 × n2n3n4n5)

(n1 × r1) (r1 × n2n3n4n5)
(r1n2 × n3n4n5)

(r1n2 × r2) (r2 × n3n4n5)
(r2n3 × n4n5)

(r2n3 × r3) (r3 × n4n5)
(r3n4 × n5)

(r3n4 × r4) (r4 × n5)
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A different tree? Hierarchical Tucker [Hackbusch 2019; Grasedyck 2010]

Tensor-Train Hierachical Tucker
{1, 2, 3, 4, 5}

{1} {2, 3, 4, 5}

{2} {3, 4, 5}

{3} {4, 5}

{4} {5}

{1, 2, 3, 4, 5}

{1, 2}

{1} {2}

{3, 4, 5}

{3} {4, 5}

{4} {5}
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TT-rounding – I

Let X be a TT-vector of size (n1 × · · · × nd) and TT-rank (r1, . . . , rd).
Aim: finding a TT-vector Y such that ||X − Y|| ≤ ε ||X ||.
Step I: δ = ||X || ε/

√
d − 1;

Step II: orthogonalize from right to left the TT-cores of X , for k = d , . . . , 2

1 Gk ← reshape
(
Xk , (rk−1 × nk rk)

)
2
[
Qk , Rk

]
← QR

(
GT

k
)
;

3 Xk ← reshape
(
Qk , (rk−1 × nk × rk)

)

4 Xk−1 ← Xk−1 ×3 Rk

Gk
rk−1 nk rk

Qk
nk rk Rk

rk−1rk−1

Xk
rkrk−1

nk

Xk−1
rk−2

nk−1

Rk
rk−1rk−1
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TT-rounding – II

Step III: truncate from left to right the TT-cores of X , for k = 1, . . . , d − 1 and s0 = 1

1 Hk ← reshape
(
Xk , (sk−1nk × rk)

)
2
[
Uk , Σk , VT

k
]
← SVD

(
Hk , δ

)
;

3 Yk ← reshape
(
Uk , (sk−1 × nk × sk)

)

4 Xk+1 ← Xk+1 ×1
(
ΣkVT

k
)T

Hk
nksk−1 rk

Uk
nk rk−1 Σk VT

k
rksk sk

Yk
rkrk−1

nk

Σk
sk Vk Xk+1

rk+1

nk+1

sk rk
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Algorithm – I

Algorithm 2: TT-rounding [Oseledets 2011]
Input:

{
Xk
}

TT-cores of X , ε ∈ (0, 1)
Output:

{
Yk
}

TT-cores of Y s.t. ||X − Y|| ≤ ε ||X ||
1 ▷ Step I: preparation
2 δ = ||X || ε/

√
d − 1;

3 G← reshape
(
Xd , (rd−1 × nd rd)

)
;

4 ▷ Step II: orthogonalization
5 for k = d , . . . , 2 do
6 [Qk , Rk ]← QR

(
GT
)
;

7 Xk ← reshape
(
Qk , (rk−1 × nk × rk)

)
;

8 G← reshape(Xk−1 ×3 Rk , (rk−2 × nk−1rk−1));
9 X1 ← reshape(G, (r0 × n1 × r1));
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Algorithm – II

10 ▷ Step III: truncation
11 s0 = 1;
12 H← reshape

(
X1, (s0n1 × r1)

)
;

13 for k = 1, . . . , d − 1 do
14 [Uk , Σk , VT

k ]← SVD
(
H, δ

)
; ▷ sk = rankδ(H)

15 Yk ← reshape
(
Uk , (sk−1 × nk × sk)

)
;

16 H← reshape
(
Xk+1 ×1 (ΣkVT

k)T, (sknk+1 × rk+1)
)
;

17 Yd ← reshape(H, (sd−1 × nd × sd)) ▷ sd = 1
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Application fields

Numerical simulations are necessary in

Stochastic equations
Uncertainty quantification problems
Quantum and vibration chemistry
Optimization
Machine learning

Frequently, they involve solving

Least-squares
min
x∈S
||b − Ax ||

Eigenpairs
Ax = λx

Linear systems
Ax = b
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Context

The problem{
L(u) = f in Ω
u = f0 in ∂Ω

for Ω ⊆ Rn1×···×nd .
(i, j)

0 1

1

∆x

∆y

A(X ) = B

where A : Rn1×···×nd → Rn1×···×nd is a multilinear operator and B ∈ Rn1×···×nd a tensor.
For large scale-simulations we have to take into account

memory costs O(nd)
computational model
numerical method
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Multilinear Solvers

Given a multilinear operator A : Rn1×···×nd → Rn1×···×nd and a tensor B ∈ Rn1×···×nd , consider
the multilinear system

A(X ) = B

Optimization methods

Density Matrix Renormalisation Group
(DMRG) [White 1992];
Alternating Minimal Energy
(AMEn) [Dolgov and Savostyanov 2014];
...

based on (M)ALS.

Numerical linear algebra methods

Conjugate Gradient (CG) [Tobler 2012];
Generalized minimal residual method
(GMRES) [Dolgov 2013];
...

based on iterative schemes.
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1-site DMRG: Optimization setting

Let A : Rn1×···×nd → Rn1×···×nd with A ∈ R(n1×n1)×···×(nd ×nd ) its associated tensor, such that
A(j, i) = A(i, j).
The solution X ∗ of the the multilinear system AX = B is the minimizer of the functional

J (X ) = 1
2⟨X ,AX⟩ − ⟨X ,B⟩

Notation
To ease the presentation, we use the following notation:

r = (r0, r1, . . . , rd)
Rm×n = R(m1×n1)×···×(md ×nd );
MTT (n, r) denotes the set* of the TT-vectors of size n and TT-rank r;
MTT (m× n, r) denotes the set* of the TT-matrices of size m× n and TT-rank r.
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1-site DMRG: from d modes to 1 mode

For every k = 1, . . . , d , define the retraction operator

Qk : MTT (n, r) 7→MTT (n×mk , r)

such that
mk = (1, . . . , mk , . . . , 1) where mk = rk−1 · nk · rk ;
the j-th TT core of Qk(X ) is equal to the j-th TT core of X , i.e.(

Qk(X )
)

j
= Xj for j ̸= k

the k-th TT core of Qk(X ) is the identity operator, i.e.(
Qk(X )

)
k
(i, j) = I.
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Retraction as TN

The TN-representation of the retraction operator

Given the TT-vector X

X1

n1

r1 X2

n2

X3
r2

n3

r2 rd Xd

nd

the TT-matrix Qk(X ) is

X1

n1

r1 X2

n2

r2 I

mk

nk

rk−1 rk rd−1 Xd

nd
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1-site DMRG: core idea

To approximate the minimizer X ∗, let X (0) ∈MTT (n, r) be an initial guess, and for every
k = 1, . . . , d we construct the retraction operator Qk(X ) and we compute(

J ◦Qk(X (k−1))
)
x = 1

2⟨Qk(X (k−1))x,A ◦Qk(X (k−1))x⟩ − ⟨Qk(X (k−1))x,B⟩

where X (k−1) has all the first (k − 1) TT-cores updated by the 1-side DMRG and the
remaining ones equal to the TT-cores of the initial guess X (0).

The minimizer of J ◦Qk(X (k−1)) is xk ∈ Rmk .

Then, xk is reshaped as an (rk−1 × nk × rk) tensor Xk , the kth TT-core of an approximation
of the minimizer X ∗.
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1-site DMRG: details

Remark that
the retraction of the multilinear operator as the contraction of all the left and right
indexes of A by Qk(X ), i.e.,

Ak = Qk(X )TAQk(X ) is (mk ×mk) matrix

the retraction of the right hand-side as the contraction of all the indexes of B by Qk(X ),
i.e.,

bk = Qk(X )TB is a length mk vector
By solving

Akx = bk

we find a vector xk of length mk , and update the k-th TT-core of the tensor we are looking for
as

Xk = reshape(xk , (rk−1 × nk × rk)).
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TN - core idea – I

The TN-representation of the TT-matrix Qk(X )T is

X1

n1

r1 X2

n2

r2 I

mk

nk

rk−1 rk rd−1 Xd

nd

and the TT-matrix A is

A1

n1

n1

r1 A2

n2

n2

r2 Ak

nk

nk

rk−1 rk rd−1 Ad

nd

nd
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TN - core idea – I

Thus, the TN-representation of the TT-matrix Qk(X )TA is

X1

A1

n1

n1

r1

r1 X2

A2

n2

n2

r2

r2

I

mk

rk−1 rk

nk

nk

Ak
rk−1 rk

rd−1

rd−1

Xd

Ad

nd

nd
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TN - core idea – I

Finally, the TN-representation of the TT-matrix Qk(X )TAQk(X ) is

X1

A1

X1

n1

n1

r1

r1

r1

X2

A2

X2

n2

n2

r2

r2

r2

I

mk

rk−1 rk

nk

nk

Ak
rk−1 rk

I

mk

rk−1 rk

rd−1

rd−1

rd−1

Xd

Ad

Xd

nd

nd
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TN - core idea – I

Finally, the TN-representation of the TT-matrix Qk(X )TAQk(X ) is

X1

A1

X1

n1

n1

r1

r1

r1

X2

A2

X2

n2

n2

r2

r2

r2

I

mk

rk−1 rk

nk

nk

Ak
rk−1 rk

I

mk

rk−1 rk

rd−1

rd−1

rd−1

Xd

Ad

Xd

nd

nd

= Ak

mk

mk

Ak is an (mk ×mk) matrix!
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TN - core idea – I

Similarly, the TN-representation of the TT-vector Qk(X )TB is

B1

X1

n1

r1

B2

X2

r2

r2

Bk
rk−1 rk

nk

Ik
rk−1 rk

mk

rd−1

rd−1

Bd

Xd = bk

mk

bk is an (mk × 1) vector!
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Optimization methods – comments

1-site DMRG relies on ALS scheme. ALS represents the basis for the other optimization
methods, which

converts a global minimization problem into a local one;
may merge two adjacent TT-cores and separates them by SVD;
may vary the TT-ranks;
may introduce expansion of the TT-cores.

Optimization methods
+ suitable for more complex problems;
± developed independently in several research groups from different fields;
− implementations are not well organized and sometimes hard to employ;
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Numerical linear algebra – comments

Iterative schemes are employed, replacing
matrices by TT-matrices;
vectors by TT-vectors;
TT-rounding steps are introduced.

The TT-rounding steps make the algorithm inexact, (hopefully) linking the solution accuracy
to the rounding precision.

+ usually straightforward to implement;
+ many theoretical results available for the matrix case can be adapted to the

TT-case;
− suitable for more simpler problems;
− TT-rounding is an expensive operation, its use has to be tuned;
− TT-rounding affects the quality of the iterative solution.
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Study case: MGS

Producing an orthogonal basis is a common
task of iterative methods. Given a set of
linearly independent vectors A = {a1, . . . , am},
the aim is producing a set Q = {q1, . . . , qm}
such that

⟨qi , qj⟩ = δij .

The Modified Gram-Schmidt (MGS) is a
classical choice thanks to its algorithmic clean
structure and its good performance∗.

Algorithm 3: Q, R = MGS(A)
Input: A = {a1, . . . , am}
Output: Q =

{q1, . . . , qm}, R
1 for i = 1, . . . , m do
2 p = ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨p, qj⟩
5 p = p− R(i , j)qj
6 R(i , i) = ||p||
7 qi = p/R(i , i)
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Orthogonalization schemes

A key property of an orthonalization scheme is producing a basis with a good orthogonality
regardless of the possible collinearities the input set.
The loss of orthogonality measures the quality in terms of orthogonality of the computed basis.

Definition
Let Qk = [q1, . . . , qk ] be the orthogonal basis produced by an orthogonalization kernel, then
the Loss Of Orthogonality (LOO) is

||Ik −Q⊤
k Qk ||.

Several theoretical results link the LOO with κ(Ak), i.e. the measure of the linearly
dependency of the input vectors Ak = [a1, . . . , ak ].

Remark
For MGS, it was proven in [Björck 1967] that ||Ik −Q⊤

k Qk || ∼ O(uκ(Ak)) where u is the
machine working precision.
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TT-MGS

The MGS algorithm is straightforwardly
formulated in TT-format.
The two fundamental modifications:

rounding precision δ ∈ (0, 1) as input;
TT-rounding step after the inner for loop.

These modifications are needed because the
linear combinations of line 5 sequentially
increases the TT-ranks!

Algorithm 5: Q, R = TT-MGS(A, δ)
Input: A = {A1, . . . ,Am}, δ ∈ R+
Output: Q = {Q1, . . . ,Qm}, R

1 for i = 1, . . . , m do
2 P = Ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨P, Qj⟩
5 P = P − R(i , j)Qj
6 P = TT-rounding(P, δ)
7 R(i , i) = ||P||
8 Qi = P/R(i , i)
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TT-MGS: numerical evaluation [Coulaud et al. 2022]

We produce a sequence of 20 TT-vectors of
size (15× 15× 15) which get more and more
collinear, as

Xk+1 = TT-rounding(∆dAk , max rank = 1)

Ak+1 = 1
||Xk+1||

Xk+1

We compute [Q,∼] = TT-MGS(A, δ = 10−5).
Let QT

kQk(i , j) = ⟨Qi ,Qj⟩ and
Ak(:, j) = reshape(Aj , n3) for i , j = 1, . . . , k
and k = 1, . . . , 20.
Experimentally

||Ik −QT
kQk || ∼ O(δκ(Ak))

Figure: The LOO of MGS vs κ(Ak).
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Summary & references

Conclusion

description of the TT format:
advantages (break of the curse of dimensionality);
disadvantages (memory growth with tensors operations);

TN formalism:
introduced in the quantum physics community;
convenient to describe high order tensors interactions;

TT application: solution of multilinear systems:
1-site DMRG: optimization-based, convenient for complex problems;
TT-MGS: NLA-based, suitable for simpler problems.
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