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Preliminaries — |

Given an (ny X -+ X ng) tensor X, the possible decompositions are

Tucker decomposition

X=85x%x1U;---xqUy where

@ Uy are orthogonal matrices of size (nx x ry) s.t.
Xy = UkZ, V) k=1,...,d
e S is a tensor of size (. X -+ X rg) s.t.
S=Xx1 U] xqgUJ;

@ the j= (j1,...,Jq) element of X is

X(§) = X0 S(h)U1(j1, M) - - - Ug(ja, ha);

where h = (hy,... hg) for hy =1,....rxand k=1,...,d.



Preliminaries — |

Remark

Existing and widely used algorithms to compute the decomposition and approximation at given
ML-rank are HOSVD, T-HOSVD and ST-HOSVD, HOOI.

See [Kolda et al. 2009; Vannieuwenhoven et al. 2012; De Lathauwer, De Moor, et al. 2000a;
De Lathauwer, De Moor, et al. 2000b].
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Given an (np X -+ X ng) tensor X, the possible decompositions are

Canonical Polyadic Decomposition
Assuming X has rank R, its CPD is

X = Zle xil) ®--- ®x£d)

where xg,k) is a vector of length ny. The j = (j1,...,Jjq) element of X is

XG) = 2R xW ) - D Ga);

Remark

Existing and widely used algorithms to compute the decomposition and approximation at given
a target rank are CPD-ALS and CPD-GEVD.
See [Kolda et al. 2009; De Lathauwer 2006].
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Pro and cons

@ Tucker decomposition
+ Always possible to compute it;
— Not unique = not a unique interpretation of data
— Storage cost depends exponentially on the order d, i.e. O(dnr + r9)
o CPD decomposition
+ Unique™ = unique interpretation of data
+ Storage cost depends linearly on the order d, i.e. O(dnR)
— NP-hard in general to find the true decomposition
assuming n = max{nk} and r = max{rx}

Does a mid-way decomposition technique exist?

Tensor-Train and Hierarchical Tucker
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Given an (np X - -+ X ng) tensor X,

Definition [Oseledets 2011]

The TT-decomposition at TT-rank is (r1,...,rq) is given by

@ d — 2 tensors of order 3 and size (rk_1 X ng X r), Xk for k=2,...,d -1

@ 2 matrices of size (n; x r1) and (ry—1 X ng), X1 and Xg.
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Tensor-Train — |

Given an (np X - -+ X ng) tensor X,

Definition [Oseledets 2011]

The TT-decomposition at TT-rank is (r1,...,rq) is given by

@ d — 2 tensors of order 3 and size (rk_1 X ng X r), Xk for k=2,...,d -1

@ 2 matrices of size (n; x r1) and (ry—1 X ng), X1 and Xg.

With an abuse of notation, we consider X; and X, as tensors of order 3 and size
(ro X np X r1) and (ry—1 X ng X rq) with rp = ry = 1. They are denoted by X; and Xj.

n n3

n» N4

r- T — ns
x| n 2

r3 ra
H x HH % PH o PH &




Tensor-Train — Il

The tensors X are the TT-cores of X.
The jkth slice w.r.t. mode-2 of the kth core, Xx(:, jk,:), is an (rk_1 X rx) matrix denoted by

X« (jk). The TT-representation of a tensor is called TT-vector.
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The tensors X are the TT-cores of X.
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The tensors X are the TT-cores of X.
The jkth slice w.r.t. mode-2 of the kth core, Xx(:, jk,:), is an (rk_1 X rx) matrix denoted by

X« (jk). The TT-representation of a tensor is called TT-vector.

Given j = (j1,-.-,Jd), the jth element of X is

Ik

d
X(G) =Y. > X1, h)Xo(hy,jo, h2) - - - Xg(hg—1.ja, 1)
k=1 h=1

= X1(j1)X2(j2) - - - Xa(ja)-

Compactly, X = X1 X, - - - Xy, with the contraction (i.e., sum over an index) as underlying
operation.
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TT and operators — |

Let A : RM*XNd 5 RMXXMd he 3 multi-linear operator. By fixing a basis for both vector
space, A can be associated with a tensor A of order 2d and size ((my X n1) x - -+ x (mg X ng)).

Definition [Oseledets 2011]

The TT-decomposition at TT-rank is (r1,...,ry) of A is given by
@ d — 2 tensors of order-4 and size (rk—1 X myg X ng X r3), Ax for k=2,...,d —1

@ 2 tensors of order-3 and size (m; X n; X r1) and (ry—1 X mg X ng), Az and Ay.

Aj and Ay can be seen as order-4 tensors of size (rp X my X n; X r1) and
(rd_1 X Mg X Ng X rd) with rp = ry = 1.




TT and operators — |l

The tensors Ay are the TT-cores of A.
The (ik,jk)th slice w.r.t. modes-(2, 3) of the kth core, Ak(:, ik, jk,:) , is an (rk—1 X ry) matrix

denoted by Ak (ik,jk). The TT-representation of a multilinear operator is called TT-matrix
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TT and operators — |l

The tensors Ay are the TT-cores of A.
The (ik,jk)th slice w.r.t. modes-(2, 3) of the kth core, Ak(:, ik, jk,:) , is an (rk—1 X ry) matrix

denoted by Ak (ik,jk). The TT-representation of a multilinear operator is called TT-matrix

Given i = (i, ...,Iq) € N™* "M and j = (j1,...,jq) € N™*""d the (i,j)th element of A is

d i
AG) =D > AL, i, ji, ) Aa(by, iz, 2, b2) - - - Ad(ha—1, ids jds 1)
k=1 h=1

= A1(i1,j1)A2(i2, j2) - - - Ag(id, jar)-

Compactly, A = A3 Ay - -+ Ay, with the contraction as underlying operation.
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Matrix Product States [Ostlund et al. 1995; Klimper et al. 1992; Fannes et al. 1992;
Vidal 2003]

The TT-format originated from the quantum physics field, where it is called Matrix
Product States (MPS).

The quantum physicists rely on a visual notation, Tensor Network, to describe MPS/TT
objects (and not only).

In the tensor network, there is
@ a node with the /abel of the object

@ one (or more) output edge with the dimension of the space to which it belong

We just draw the vector x of length n

December 12, 2024 8/55
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@ the length n vector x is depicted as

)
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Example of TN — |

@ the length n vector x is depicted as

@ the (m x n) matrix A is depicted as

vl

e the (m x n) orthogonal matrix Q is depicted as

¢

e the (m x n x p) tensor X is depicted as

m



Contraction with TN

TNs allow the representation of standard linear alegbra operations and decomposition.
The inner product between two length n vectors, x and y

is depicted joining by an inner edge the node of x and y, i.e.

()0 = O E) = ©F) = @
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Contraction with TN

TNs allow the representation of standard linear alegbra operations and decomposition.
The inner product between two length n vectors, x and y

(x,y) =x"y

> x(k)y(k) =¢

k=1

is depicted joining by an inner edge the node of x and y, i.e.

()0 = O E) = ©F) = @

Remark

A contraction is depicted by an inner edge joining two nodes. Example of contractions: the
matrix-vector product, the matrix-tensor product, the contraction between tensors...
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@ the matrix-vector product Ax is depicted as

m .n. :
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@ the matrix-vector product Ax is depicted as
) -y
o the QR-decomposition of A is depicted as

m(:)n:m.r.n
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@ the matrix-vector product Ax is depicted as
) e
o the QR-decomposition of A is depicted as
m(:)n:m.r. n
@ the SVD decomposition of A is depicted as
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@ the matrix-tensor product X x3 C, resulting in ), is depicted as

m —m



Examples of TN contraction — Il

@ the matrix-tensor product X x3 C, resulting in ), is depicted as

I

@ the Tucker decomposition of X is depicted as




-
TT and TN

The TN-representation of

@ TT-vector X is

@ @@ E)
n no n3

nq



-
TT and TN

The TN-representation of

m np n3 nyg

@ TT-vector X is

@ TT-matrix A is

Martina lannacito Tensor-Train December 12, 2024 13 /55



TT-arithmetic — |

Given two TT-vectors, X and ), of the same size, it can be proven that

Proposition [Oseledets 2011]

The sum TT-vector, Z(j) = X(§) + V(j), is such that

)= [X161) Ya(r)]  and Zd(jd)zlﬁjgjﬂ

l wl

where j = (j1,...,jd), jk=1,...,ngand k=1,...,d.
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Let j = (j1,...,Jq) € N™XX"d the jth element of Z is
Z2(4) = Z1(1)Z202) - - - Za-10jd—1)Za(jd)

= {Xl(jl) Y1(J'1)} [X2(jz) Yz(jz)] [Xdl(jdl)

Xd(jd)
Ya-10d-1)| |YaUa)|"

By directly multiplying the blocks, we obtain

Z(j) = X1(1)X2(j2) - - - Xg(a) + Y1(1)Y2(12) - - - Ya (i),

that is the thesis.



]
Proof — |

Let j = (j1,...,Jq) € N™XX"d the jth element of Z is
Z2(4) = Z1(1)Z202) - - - Za-10jd—1)Za(jd)

= {Xl(jl) Y1(J'1)} [Xz(jz) Yz(jz)] [Xdl(jdl)

Xd(jd)
Ya-10d-1)| |YaUa)|"

By directly multiplying the blocks, we obtain
Z(j§) = X1(1)X2(j2) - - - XaUa) + Y1(1)Y2(2) - - - Ya (),

that is the thesis.

Remark

The TT-rank of Z is the sum of the TT-ranks of X and ). The linear combination of two
TT-elements can be obtained only by memory manipulation.

December 12, 2024 15 /85



TT-arithmetic — |l

Given a TT-vectors, X, and a rank-1 tensor, ), of the same size, it can be proven that

Lemma [Oseledets 2011]

Their inner product is such that

(X, V) =2{(Z2--Zg-124),

where
ny ng Nk
z1 =Y yi()X1(i),  za= Y Yalia)Xala),  and  Zi= > yi(in)Xk(i)
-jl:l jd:]- jk:].

fork=2,...,d—1.



]
Proof — I

The inner product between two tensors is (X, Y) = >7; X(j)V(i). As Y is a rank-1 tensor, it
gets

(X, ) =>X[@y1®@- @ya)() =

j



]
Proof — I

The inner product between two tensors is (X, Y) = >7; X(j)V(i). As Y is a rank-1 tensor, it
gets

(X0 => X[y1®-- @ yq)( Z Z X1(1) - Xa(a)y1(1) - - - ya(a)
j

kljkl



]
Proof — I

The inner product between two tensors is (X, Y) = >7; X(j)V(i). As Y is a rank-1 tensor, it
gets

(X0 => X[y1®-- @ yq)( Z Z X1(1) - Xa(a)y1(1) - - - ya(a)
j

kljkl

- (% yl(fl)xlol)) - (Z ydud)xd(jd>).

j1=1 Ja=1



]
Proof — I

The inner product between two tensors is (X, Y) = >7; X(j)V(i). As Y is a rank-1 tensor, it
gets

V)= > X([§)(y1® - @ya)( Z Z X1(j1) - - Xa(Ua)y1 (1) - - - ya(ia)
j

kljkl

- (% ylul)xlol)) - (Z ydud>xd(jd>).

j1=1 Ja=1

We recognize the expressions of z, and Zy for h=1,d and k =2,...,d — 1, that is the
thesis, i. e.,

<‘X’y> = <X>y> :ZI(ZZ"'Zd—lzd)'
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Given two TT-vectors, X and ), of the same size, it can be proven that

Proposition [Oseledets 2011]

define Z(j) = X(j)Y(j). Then
(X, =>"20) =Y _Z1(h) - Zala),
i

J

where
Zk(jk) :Xk(jk) Rk Yk(jk) for k = 1,...,d.



TT-arithmetic — 1l

Given two TT-vectors, X and ), of the same size, it can be proven that

Proposition [Oseledets 2011]

define Z(j) = X(j)Y(j). Then

(X, V) =>"231)=>_Z1(h) - Za(ja),
j

J

where
Zk(jk) :Xk(jk) Rk Yk(jk) for k = 1,...,d.

The TT-cores of Z are equal to the product of the TT-ranks of X and ). The TT-cores of Z
can be computed by nd Kronecker products.




]
Proof — Il

Let j = (j1,.-.,Jq) € N™X%Md the jth element of Z is
2() = XGVG) = (X(h) - Xalia)) (Y1) - Yalia))-

Notice now that X4(jg) has size (rg, x 1) and Y1(j1) has size (1 x sq4,). Thus, we can make
explicit in the previous equation the Kronecker product, writing

2() = (Xa(1) - XaGa)) @k (Ya02) -+ Yalia) )



Proof — Il

Let j = (j1,.-.,Jq) € N™X%Md the jth element of Z is

2() = XGVG) = (X(h) - Xalia)) (Y1) - Yalia))-

Notice now that X4(jg) has size (rg, x 1) and Y1(j1) has size (1 x sq4,). Thus, we can make
explicit in the previous equation the Kronecker product, writing

2() = (Xa(1) - XaGa)) @k (Ya02) -+ Yalia) )

Recalling the mixed-product property of the Kronecker product, we can rewrite the previous
equation as

2(j) = (X1(j1) ®x Y1(j1)) e (Xd(Jd) ®x Yd(jd))-

that is the thesis.
Tensor-Train December 12, 2024 19/55



TT-arithmetic — IV

Given a TT-vector, X, and a TT-matrix, A, of compatible size, it can be proven that

Proposition [Oseledets 2011]

The contraction TT-vector, V(i) = A(i,j)X(j) is such that

ng
Yi(i) = > Axlins i) @x Xilik)
Jk=1

where j = (ji,...,jg) and i = (i1,...,ig), jk=1,...,nkand ix =1,... ,my, k=1,...,d.
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TT-arithmetic — IV

Given a TT-vector, X, and a TT-matrix, A, of compatible size, it can be proven that

Proposition [Oseledets 2011]

The contraction TT-vector, V(i) = A(i,j)X(j) is such that

ng
Yi(i) = > Axlins i) @x Xilik)
Jk=1

where j = (ji,...,jg) and i = (i1,...,ig), jk=1,...,nkand ix =1,... ,my, k=1,...,d.

The TT-rank of ) is the product of the TT-ranks of A and X. The contraction between a
TT-matrix and a TT-vector can be obtained by dnm Kronecker products.




]
Proof — IV

The ith element of YV is

Nk

d
=S AGDXGE) =Y D (Al n) - Adlia.ja)) (Xalin) -+ Xalia))
f k=1 hy=1

Notice now that Ay (ig,ja) has size (rg, x 1) and X1(j1) has size (1 X sg, ). Thus, we can make
explicit in the previous equation the Kronecker product, writing

Z Z (Al i1, J1) Ad(idajd)) Rx (Xl(jl) - ~Xd(jd)).

k=1 hy=1



]
Proof — IV

The ith element of YV is

Nk

d
=S AGDXGE) =Y D (Al n) - Adlia.ja)) (Xalin) -+ Xalia))
f k=1 hy=1

Notice now that Ay (ig,ja) has size (rg, x 1) and X1(j1) has size (1 X sg, ). Thus, we can make
explicit in the previous equation the Kronecker product, writing

Z Z (Al i, 1) Ad(idajd)) ®x (Xl(jl) . ‘xd(jd))-
k=1 hy=1
Recalling the mixed-product property of the Kronecker product and the sum linearity, we can
rewrite the previous equation as V(i) = Y1(i1) - - - Y4(ig) where
N
Yi(i) = > Axliks i) @x X(ik)
Jk=1
that is the thesis.

Martina lannacito Tensor-Train December 12, 2024 21/55
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-
TT pro and cons

—+ storage cost linear w.r.t. the tensor order, i.e., (’)(dnr2);
—+ arithmetic ad hoc to perform linear algebra operations;
—+ always possible to compute with stable operations the TT-decomposition;

— linear algebra operations increase (significantly) the rank

@ suggested reading: Oseledets 2011; GelB 2017; Oris 2014;
@ computational packages: TT-Toolbox, TTpy, torchTT, t3f...

December 12, 2024 2785
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T T-decomposition — |

Let X be an order-d tensor of size (ny X --- X ng), and N = [[¢_; ny.

o X(1) — reShape(X,(nl X ml)), nj_@_”Z"~nd

mp = N/nl

@ [U1, X1, V]] « SVD(X(y)):; "...,,d

I
@ X; < Uy, Ist TT-core of size (n; X r) @_‘
m

Q E; < reshape(X;1V7, (mn x my)), nan <: ) n3---ng

my = my/np
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At the kth step

Q [Uy, X4, V]| < SVD(Ey); ”kfkk+1---nd



TT-decomposition — |l
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TT-decomposition — |l

At the kth step

Q [Uy, X4, V]| < SVD(Ey); ”kfkk+1---nd

@ X < reshape(Uy, (rk—1 X nk X rx)), kth TT-core

© E;1 < reshape(X V|, (ngy1rk X Mis1)), Nk4+17k <: > Nt2 - Ny

M1 = mk/”k



T T-decomposition — Il

At the (d — 1)th step

Q@ Uy 1.%4-1,V] ;] + SVD(E4-_1);



T T-decomposition — Il

At the (d — 1)th step

Ng—1fd—2 N r-1 £ N fi1 {r )\ ng
Q@ [Uy1,X4.1,V]_ 4] < SVD(E4_1); NG N "
rd—2 @ rg—1
Q Xy 1 < reshape(Uy_1,(rg—2 X ng—1 X rqg_1)),
(d — 1)th TT-core
Nd—1
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T T-decomposition — Il

At the (d — 1)th step

O [Ug-1,Xg-1,Vy_ 4] < SVD(Eg-1); a1 &) ¢y
rd—2 @ rg—1
@ Xy_1 < reshape(Uy_1,(rg—2 X ng—1 X rg—_1)),
(d — 1)th TT-core
Ng—1
Q@ Xy« X, 1V ,, dth TT-core fd—1 @
ng



|
Algorithm

Algorithm 1: TT-SVD [Oseledets 2011]

Input: an (n; X --- X ng) dense tensor X
Output: {X,} TT-cores of X
1 m=ny---nyg, and rhp = 1;
2 E < reshape (X, (ron1 x my));
3fork=1,...,d—1do

4 [Uk, Xk, V}] < SVD(E); > re = rank(E)
5 Xy < reshape(U, (rk—1 x ng x rg)) ;

6 Mmyyq < mk/nk;

7 E < reshape(X V|, (rcnks+1 X mis1));

8 Xy < reshape(E, (rg_1 X ng X rq)) >rg=1




TT-SVD quality

Theorem [Oseledets 2011]

Given a tensor, X, the best approximation of X in the Frobenius norm with TT-ranks bounded
by rr always exists, denoted by X*.

If Y denotes the TT-decomposition of X computed by the TT-SVD algorithm, ) is
quasi-optimal, i.e.,

1X =Vl < Vd - 1]]x — x|



|
TT-SVD and graph

Consider X’ an (n1 X np X n3 X ng X ng) tensor

{1.2.3.4,5) (m > man3nans)
v N
/ \ (m x r1) (rn X nan3nans)
{1} {273’4’ 5} (r1n2 X n3n4n5)
v N
/ \ (r1n2 X rz) (rz X n3n4n5)
{2} {3747 5} (r2n3 X n4n5)
Ve v
/ \ (ranz3 x r3) (r3 X ngns)
{3} {4’5} (r3n4 X n5)

/ \ v N

(r3n4 X r4) (I’4 X n5)



|
A different tree? Hierarchical Tucker [Hackbusch 2019; Grasedyck 2010]

Tensor-Train Hierachical Tucker
{1,2,3,4,5} {1,2,3,4,5}
AN /N
{2,3,4,5} {1 2} {3 4,5}
/
{2} {\3’4,5} {1} {2} 3} \{475}
/ VRN
3} \{‘475} CYR )
VRN
{4} {5}
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Let X' be a TT-vector of size (n; X -+ x ng) and TT-rank (r1,...,rq).
Aim: finding a TT-vector ) such that ||[X — )|| < e||X]].
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TT-rounding — |
Let X' be a TT-vector of size (n; X -+ x ng) and TT-rank (r1,...,rq).

Aim: finding a TT-vector ) such that ||[X — )|| < e||X]].

Step I: 0 = ||X]||e/Vd — 1;

Step II: orthogonalize from right to left the TT-cores of X, for k =d,...,2

|
@ G + reshape(Xy, (rk—1 X nkrk)) k@_ Nkl

@ [Q«, Ry] < QR(G)); Ml Qo)=L (R, )—Te-1
& g
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TT-rounding — |
Let X' be a TT-vector of size (n; X -+ x ng) and TT-rank (r1,...,rq).
Aim: finding a TT-vector ) such that ||[X — )|| < e||X]].

Step I: 0 = ||X]||e/Vd — 1;

Step II: orthogonalize from right to left the TT-cores of X, for k =d,...,2

|
@ G + reshape(Xy, (rk—1 X nkrk)) k@_ Nkl

Q [Q«, R« < QR(G); et @ Fes @ o1
re—1 4

© X < reshape(Qy, (rk—1 X nk X ry))

ng
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TT-rounding — |
Let X' be a TT-vector of size (n; X -+ x ng) and TT-rank (r1,...,rq).
Aim: finding a TT-vector ) such that ||[X — )|| < e||X]].

Step I: 0 = ||X]||e/Vd — 1;

Step II: orthogonalize from right to left the TT-cores of X, for k =d,...,2

|
@ G + reshape(Xy, (rk—1 X nkrk)) k@_ Nkl

Q [Q«, R« < QR(G); et @ Fes @ o1
re—1 4

© X < reshape(Qy, (rk—1 X nk X ry))

P
=2 (o ) fk=1 ka\ M1
Q Xi_1 ¢+ X1 x3Rg \\ﬁ NI
Ng_1
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TT-rounding — Il

Step IllI: truncate from left to right the TT-cores of X', for k=1,...,d —1land sp =1

Ny Sy _— ( ) k
@ Hy < reshape (X, (Sk—1nk X r«)) - r
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TT-rounding — Il

Step IllI: truncate from left to right the TT-cores of X', for k=1,...,d —1land sp =1

Ny Sy _— ( ) k
@ Hy < reshape (X, (Sk—1nk X r«)) - r

T .
e [Uk,:k,Vk] %SVD(Hkaé)y nkrk71 @ Sk @ Sk @_rk
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TT-rounding — Il

Step IllI: truncate from left to right the TT-cores of X', for k=1,...,d —1land sp =1

Ny Sy _— ( ) k
@ Hy < reshape (X, (Sk—1nk X r«)) - r

@ [Uk, X4, V]| < SVD(Hy,0);

Nghe—1 @ Sk @ Sk V] f
Fe—1 4
© Vi < reshape(Uy, (sk—1 X ng X si))
Nk
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TT-rounding — Il

Step IllI: truncate from left to right the TT-cores of X', for k=1,...,d —1land sp =1

Ny Sy _— ( ) k
@ Hy < reshape (X, (Sk—1nk X r«)) - r

Q [Uk,zk,VH — SVD(Hk,(S); n
KM—1 (11 )\_Sk -
Ot e

© Vi < reshape(Uy, (sk—1 X ng X si)) = L
Nk
T
O X1 Xigr x1 (ZkVY) s @ s @ B (g )Mt
Ni+1



|
Algorithm — |

Algorithm 2: TT-rounding [Oseledets 2011]
Input: {X,} TT-cores of X, £ € (0,1)
Output: {Vi} TT-cores of Y s.t. [|[X — V|| <e||X]|
> Step I: preparation
6 =|X|le/Vd—-1;
G « reshape(Xy, (r4—1 X ndrd));
> Step II: orthogonalization
for k=4d,...,2do

[Q«, Rk] < QR(GT);

Xy < reshape(Qx, (rk—1 X nk x rg)) ;

G < reshape(Xx_1 X3 R, (rk—2 X nk_1rk—1));
X; < reshape(G, (rp X n1 X n));

© oo N oo 00 & W N =




|
Algorithm — [l

10 > Step Ill: truncation

1 sp = 1;

12 H «+ reshape (X1, (som X n));

13 fork=1,...,d—1do

14 [Uk, Xk, V] < SVD(H, 9); > s, = ranks(H)
15 Yk < reshape (U, (sk—1 X nk X sk)) ;

16 H«+ reshape(/l’k+1 X1 (szI)T, (SknkJrl X rk+1));
17 Vg < reshape(H, (sy—1 X ng X s4)) >sy=1
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Application fields

Numerical simulations are necessary in

Stochastic equations

Uncertainty quantification problems

Optimization

,
».
'

°
°
@ Quantum and vibration chemistry
°
°

Machine learning

L o

Frequently, they involve solving

Least-squares Eigenpairs Linear systems
min ||b — Ax|| Ax = Ax Ax=Db
x€eS
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Context

The problem

for Q C RM>xnd,

A(X)=B

where A : RM*XNd _ RMXXNd g 3 multilinear operator and B € R™*""*"d 3 tensor.

For large scale-simulations we have to take into account
@ memory costs O(n9)
@ computational model

@ numerical method

Martina lannacito Tensor-Train
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Multilinear Solvers

Given a multilinear operator A : R™M* X4 — RM>"X"d and 3 tensor B € R™M*" %" consider
the multilinear system

AX)=8
Optimization methods Numerical linear algebra methods
@ Density Matrix Renormalisation Group e Conjugate Gradient (CG) [Tobler 2012];
(DMRG) [White 1992]; @ Generalized minimal residual method
@ Alternating Minimal Energy (GMRES) [Dolgov 2013];

(AMEn) [Dolgov and Savostyanov 2014]; o

° ... based on iterative schemes.
based on (M)ALS.



1-site DMRG: Optimization setting

Let A : RM*Xng _y RmxXXnd ith A e R(mxm)xx(nixna) jts associated tensor, such that
A(i, i) = A(i, j)-

The solution X'* of the the multilinear system AX = B is the minimizer of the functional

T(X) = %(X,A)Q _ (X, B)



1-site DMRG: Optimization setting

Let A : RM*Xng _y RmxXXnd ith A e R(mxm)xx(nixna) jts associated tensor, such that
A(i, i) = A(i, j)-

The solution X'* of the the multilinear system AX = B is the minimizer of the functional

T(X) = %(X,A)O _ (X, B)

Notation
To ease the presentation, we use the following notation:

o r=(ro,r,...,rq)
@ RMxn _ R(mixni)x-x(mgxng).

@ M 771 (n,r) denotes the set* of the TT-vectors of size n and TT-rank r;

® M7 (m x n,r) denotes the set* of the TT-matrices of size m x n and TT-rank r.

December 12, 2024 57785



]
1-site DMRG: from d modes to 1 mode

For every k = 1,...,d, define the retraction operator
Qi Mrr(n,r) = Myr(n X my,r)

such that
e my=(1,...,my, ..., 1) where my = re_1 - ng - rg;
o the j-th TT core of Q,(X) is equal to the j-th TT core of X, i.e.

(@) =% for  j#£k
@ the k-th TT core of Q(X) is the identity operator, i.e.
X i,j)=1
(Qu(1)) (id)



Retraction as TN

The TN-representation of the retraction operator

Given the TT-vector X

m n

<
-
S @
w
N
i
1

the TT-matrix Qx(X) is

ny na ng

a2

my
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N
1-site DMRG: core idea

To approximate the minimizer X*, let X(©) e M 1r(n,r) be an initial guess, and for every
k =1,...,d we construct the retraction operator Qx(X) and we compute

1

QU )x, Ao QA )x) — (Qu(A)x, B)

(70 @uatM))x =2

where X(k=1) has all the first (k — 1) TT-cores updated by the 1-side DMRG and the
remaining ones equal to the TT-cores of the initial guess X(?).
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1-site DMRG: core idea

To approximate the minimizer X*, let X(©) e M 1r(n,r) be an initial guess, and for every
k =1,...,d we construct the retraction operator Qx(X) and we compute

1

QU )x, Ao QA )x) — (Qu(A)x, B)

(70 @uatM))x =2

where X(k=1) has all the first (k — 1) TT-cores updated by the 1-side DMRG and the
remaining ones equal to the TT-cores of the initial guess X(?).

The minimizer of J o Qx (X)) is x; € R«

Then, xi is reshaped as an (rx_1 X ng X ri) tensor Xy, the kth TT-core of an approximation
of the minimizer X'*.
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1-site DMRG: details

Remark that

@ the retraction of the multilinear operator as the contraction of all the left and right
indexes of A by Q(X), i.e.,

A = Qu(X)TAQK(X) is (my x my) matrix
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Remark that

@ the retraction of the multilinear operator as the contraction of all the left and right
indexes of A by Q(X), i.e.,

A = Qu(X)TAQK(X) is (my x my) matrix

@ the retraction of the right hand-side as the contraction of all the indexes of B by Q(X),
ie.,
b, = 9Qx(X)'B is a length my vector



N
1-site DMRG: details

Remark that

@ the retraction of the multilinear operator as the contraction of all the left and right
indexes of A by Q(X), i.e.,

A = Qu(X)TAQK(X) is (my x my) matrix

@ the retraction of the right hand-side as the contraction of all the indexes of B by Q(X),
ie.,
b, = 9Qx(X)'B is a length my vector
By solving
AkX = bk

we find a vector x, of length my, and update the k-th TT-core of the tensor we are looking for
as
Xy = reshape(xk, (rk—1 X ng X rx)).



]
TN - core idea — |

The TN-representation of the TT-matrix Q,(X)7 is

my
. k- re_  _rfd- @
n ny N ngq

and the TT-matrix A is

m o Nk Nd
r . !&—1 i __fd—1
n no ng
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TN - core idea — |

Thus, the TN-representation of the TT-matrix Q(X)" A is

D O

np ng
ORORSOL
m np Ny

Martina lannacito Tensor-Train
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o

ng
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TN - core idea — |

Finally, the TN-representation of the TT-matrix Q,(X)"AQx(X) is

Martina lannacito

my

!&—1 r .

Nk

I @ ri _

Nk
I a rg _

my

Tensor-Train

ng
(i
ng
()
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TN - core idea — |

Finally, the TN-representation of the TT-matrix Q,(X)"AQx(X) is

<
IN) IN) IN)
1 1 1
I I I

My

my
ng ng
e ) = 0
s ng -
k

()

A, is an (my x my) matrix!

Martina lannacito
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TN - core idea — |

Similarly, the TN-representation of the TT-vector Q4 (X)"B is
r2 _. _rls— Mg . _1fd-
; _r/s—

by is an (my x 1) vector!



Optimization methods — comments

1-site DMRG relies on ALS scheme. ALS represents the basis for the other optimization
methods, which

@ converts a global minimization problem into a local one;

@ may merge two adjacent T T-cores and separates them by SVD;
@ may vary the TT-ranks;
o

may introduce expansion of the TT-cores.



Optimization methods — comments

1-site DMRG relies on ALS scheme. ALS represents the basis for the other optimization
methods, which
@ converts a global minimization problem into a local one;
@ may merge two adjacent T T-cores and separates them by SVD;
@ may vary the TT-ranks;
@ may introduce expansion of the TT-cores.
Optimization methods
—+ suitable for more complex problems;
+ developed independently in several research groups from different fields;

— implementations are not well organized and sometimes hard to employ;



Numerical linear algebra — comments

Iterative schemes are employed, replacing
@ matrices by TT-matrices;
@ vectors by TT-vectors;
@ TT-rounding steps are introduced.



Numerical linear algebra — comments

Iterative schemes are employed, replacing

@ matrices by TT-matrices;

@ vectors by TT-vectors;

@ TT-rounding steps are introduced.

The TT-rounding steps make the algorithm inexact, (hopefully) linking the solution accuracy
to the rounding precision.

+
+

usually straightforward to implement;

many theoretical results available for the matrix case can be adapted to the
TT-case;

suitable for more simpler problems;

TT-rounding is an expensive operation, its use has to be tuned;
TT-rounding affects the quality of the iterative solution.



Study case: MGS

Producing an orthogonal basis is a common
task of iterative methods. Given a set of

linearly independent vectors A = {a1,...,anm},
the aim is producing a set Q = {q1,...,qm}
such that

(ai,qj) = dj;.



.
Study case: MGS

Algorithm 4: Q R = MGS(A)

Producing an orthogonal basis is a common Input: A= {ay,...,an}
task of iterative methods. Given a set of Output: Q =
linearly independent vectors A = {a1,...,anm}, {q1,....am}, R
the aim is producing a set @ = {q1,...,qm} 1fori=1.... .mdo
such that 2 p= z;,- 7

(ai,qj) = dj;. 3 forj=1,...,i—1do
The Modified Gram-Schmidt (MGS) is a 4 R(i,j) = (p, q))
classical choice thanks to its algorithmic clean p=p—R(i,j)a
structure and its good performance®. 6 R(i, i) = ||p||

7 | ai=p/R(i,i)




Orthogonalization schemes

A key property of an orthonalization scheme is producing a basis with a good orthogonality
regardless of the possible collinearities the input set.

The loss of orthogonality measures the quality in terms of orthogonality of the computed basis.
Definition

Let Qx = [d1,- - -, d«]| be the orthogonal basis produced by an orthogonalization kernel, then
the Loss Of Orthogonality (LOO) is

1Tk — Q4 Q-
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Orthogonalization schemes

A key property of an orthonalization scheme is producing a basis with a good orthogonality
regardless of the possible collinearities the input set.

The loss of orthogonality measures the quality in terms of orthogonality of the computed basis.

Definition

Let Qx = [d1,- - -, d«]| be the orthogonal basis produced by an orthogonalization kernel, then
the Loss Of Orthogonality (LOO) is

1Lk — Qf Q-
Several theoretical results link the LOO with x(Ag), i.e. the measure of the linearly
dependency of the input vectors Ay = [ay,. .., ax].

Remark

For MGS, it was proven in [Bjérck 1967] that ||Ix — Q/ Q|| ~ O(ur(Ak)) where u is the
machine working precision.



TT-MGS

Algorithm 5: O R = TT-MGS(.A, 9)
The MGS algorithm is straightforwardly Input: A={A,...,An}, 6 €R,

formulated in TT-format. Output: O ={0Q1,...,0m}, R

1fori=1,...,mdo

P =A;

forj=1,...,i—1do
R(i.j) = (P, Qj)

P = TT-rounding(P, J)

R(i, i) = [|P]]

Qi = P/R(i, )

0 N O ks DN




TT-MGS

Algorithm 6: O, R = TT-MGS(.A, 9)
The MGS algorithm is straightforwardly Input: A={A,...,An}, 6 €R,

formulated in TT-format. Output: O ={0Q1,...,0m}, R

The two fundamental modifications: 1fori=1,...,mdo
. .. . : 2 | P=A;

@ rounding precision § € (0,1) as input; 3 | forj—1....i 1do

@ TT-rounding step after the inner for loop. 4 R(i,j) = (P, Q)
5 'P:P*R(I,_/)QJ
6 P = TT-rounding(P, J)
7| R(i,i) =[Pl
8 Q; =P/R(i,i)




TT-MGS

Algorithm 7: Q,R = TT-MGS(A4, §)
The MGS algorithm is straightforwardly Input: A={A,...,An}, 6 €R,

formulated in TT-format. Output: O ={0Q1,...,0m}, R

The two fundamental modifications: 1fori=1,...,mdo
. . . _ P=A

@ rounding precision § € (0,1) as input; j for j—1.....i—1do

@ TT-rounding step after the inner for loop. 4 R(i,j) = (P, Q)
These modifications are needed because the 5 P=P- R("J)QJ
linear combinations of line 5 sequentially 6| P ,:,TT_roundmg(P?‘s)
increases the TT-ranks! ! R(i.7) = IIPI]

' 8 | Qi=P/R(i,i)
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TT-MGS: numerical evaluation [Coulaud et al. 2022]

We produce a sequence of 20 TT-vectors of
size (15 x 15 x 15) which get more and more
collinear, as

Xk+1 = TT-rounding(A4.Ax, max_rank = 1)
1

T Xk+1
[ X1l

Aks1 =
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We produce a sequence of 20 TT-vectors of
size (15 x 15 x 15) which get more and more
collinear, as

Xk+1 = TT-rounding(A4.Ax, max_rank = 1)
1

A1 = 75— Xk+1
gl T

We compute [Q, ~] = TT-MGS(A,J = 1075).



TT-MGS: numerical evaluation [Coulaud et al. 2022]

We produce a sequence of 20 TT-vectors of
size (15 x 15 x 15) which get more and more
collinear, as
Xk+1 = TT-rounding(A4.Ax, max_rank = 1)
1

A1 = 75— Xkt
AEETE P TR

We compute [Q, ~] = TT-MGS(A,J = 1075).

Let Q,Q«(/,)) = (Qi, Q;) and
A.(:,j) = reshape(A;, n®) fori,j=1,...,k

and k=1,...,20.

Martina lannacito Tensor-Train
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TT-MGS: numerical evaluation [Coulaud et al. 2022]

We produce a sequence of 20 TT-vectors of
size (15 x 15 x 15) which get more and more

collinear, as

Xk+1 = TT-rounding(A4.Ax, max_rank = 1)
1
A1 = 75— k41
T Xl

We compute [Q, ~] = TT-MGS(A,J = 1075).

Let Q,Q«(/,)) = (Qi, Q;) and
A.(:,j) = reshape(A;, n®) fori,j=1,...,k

and k=1,...,20.

Experimentally
[T — QR Qx| ~ O(3r(Ax))

Martina lannacito
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Summary & references

Conclusion

@ description of the TT format:

e advantages (break of the curse of dimensionality);
o disadvantages (memory growth with tensors operations);

@ TN formalism:

e introduced in the quantum physics community;
e convenient to describe high order tensors interactions;

o TT application: solution of multilinear systems:

o 1-site DMRG: optimization-based, convenient for complex problems;
e TT-MGS: NLA-based, suitable for simpler problems.
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