Tensor-based algorithms: applications and challenges

Martina Iannacito

APO team seminar Toulouse, December 19, 2023

Overview

Tensor preliminary

Master's thesis

Biodiversity from spectral images

Results with Tucker model

Doctoral thesis

Numerical linear algebra

Results with Tensor-train model

Postdoctoral project

Canonical Polyadic Decomposition

New CPD algorithm

Conclusion

From scalars to tensors

Matrix

- object in $\mathbb{K}^{n_1 \times n_2}$
- set of n_2 elements in \mathbb{K}^{n_1}
- linear operator from \mathbb{K}^{n_2} to \mathbb{K}^{n_1}

Tensor

- object in $\mathbb{K}^{n_1 \times \cdots \times n_d}$
- set of $(n_{i_1} \times n_{i_k})$ elements in $\mathbb{K}^{n_{j_1}\times\cdots\times n_{j_\ell}}$
- multilinear operator from $\mathbb{K}^{n_{j_1}\times \cdots \times n_{j_\ell}}$ to $\mathbb{K}^{n_{i_1} \times \cdots \times n_{i_k}}$ with $k + \ell = a$

Unfolding

Let X be a 3-order tensor of size $(n_1 \times n_2 \times n_3)$

Definition: the 1-st mode matricization $\mathbf{X}^{(1)}$ is a $(n_1 \times n_1 n_2)$ matrix, obtained stacking the vectors

$$
\mathbf{x}_{i_1} = \text{vec}(\mathcal{X}(i_1,\cdot,\cdot)).
$$

Matrix-tensor product

Let X be a $(n_1 \times n_2 \times n_3)$ tensor. If **G** is a $(n_1 \times m_1)$ matrix Definition: the 1st mode matrix-tensor product

 $\mathcal{Y} = \mathcal{X} \times_1 \mathbf{G}$

a $(m_1 \times n_2 \times n_3)$ such that

$$
\mathcal{Y}(j_1, i_2, i_3) = \sum_{i_1=1}^{n_1} \mathcal{X}(i_1, i_2, i_3) \mathbf{G}(i_1, j_1)
$$

Computational: a straightforward way of getting Y the matrix-tensor product is computing

$$
\mathsf{Y} = \mathsf{G}^\mathcal{T} \mathsf{X}^{(1)}
$$

and then tensorizing **Y** into \mathcal{Y} .

Overview

Tensor preliminary

Master's thesis

Biodiversity from spectral images Results with Tucker model Doctoral thesis Numerical linear algebra Results with Tensor-train model

Postdoctoral project

Canonical Polyadic Decomposition New CPD algorithm

Conclusion

Master's people

Supervisors

algebraic geometry

algorithms for tensor decomposition

- plant ecology
- algorithms for biodiveristy

Master's project

Over a time series of Europe spectral images,

- get two images from two spectral bands (RED and NIR);
- compute the normalized difference vegetation index per pixel, i.e.,

$$
\text{NDVI}(i, j) = \frac{\text{NIR}(i, j) - \text{RED}(i, j)}{\text{NIR}(i, j) + \text{RED}(i, j)}
$$

compute a biodiversity index over the resulting NDVI image

Figure: from [Bedini [2017\]](#page-35-0).

What happens if the NDVI image is computed from the NIR and RED spectral images stored in a tensor and compressed?

Tucker's model [Tucker [1966;](#page-37-0) De Lathauwer et al. [2000\]](#page-36-0)

If A is a $(n_1 \times n_2 \times n_3)$ tensor, its Tucker decomposition becomes $\mathcal{A} = \mathcal{C} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3$

where

 \blacksquare C is a $(r_1 \times r_2 \times r_3)$ tensor;

 \mathbf{U}_i is a $(n_i \times r_i)$ orthogonal matrix, called *i*-th factor matrix.

The memory requirement is $\mathcal{O}(r^d + nr)$ where $r = \max r_i, \ n = \max n_i$ and d is the tensor order.

Rényi index result [Bernardi et al. [2019\]](#page-35-1)

 (R) Compared with R compared

(C) Component rank 50 compression (D) Component rank 100 compression

(E) Component rank 500 compression (F) Component rank 1000 compressio

Rényi index

Uses only pixel value frequencies

Compression at multilinear rank (i*,* i*,* 3) with i ∈ {10*,* 50*,* 100*,* 500*,* 1000}

- memory used ranges between 0.19% and 22%;
- average error per pixel ranges between $\overline{}$ 13% and 5%.

Rao index result [Bernardi et al. [2019\]](#page-35-1)

(C) Component rank 50 compression

 (D) Component rank 100 compression (E) Component rank 500 compression (F) Component rank 1000 compression

Rao index

Uses only pixel values and their frequencies

Compression at multilinear rank $(i, i, 3)$ with $i \in \{10, 50, 100, 500, 1000\}$

- memory used ranges between 0.19% and 22%;
- **a** average error per pixel ranges between 63% and 19% .

Overview

Tensor preliminary

Master's thesis

Biodiversity from spectral images

Results with Tucker model

Doctoral thesis

Numerical linear algebra

Results with Tensor-train model

Postdoctoral project

Canonical Polyadic Decomposition

New CPD algorithm

Conclusion

Ph.D. people

Supervisors

- tensor methods
- **high-dimensional simulations**

Figure: Prof. O. Coulaud, Inria Bordeaux Figure: Prof. L. Giraud, Inria Bordeaux (usually in Toulouse)

- numerical linear algebra
- \blacksquare finite precision arithmetic 13

Context

The problem

$$
\begin{cases}\n\mathcal{L}(u) = f & \text{in } \Omega \\
u = f_0 & \text{in } \partial\Omega\n\end{cases} \quad \text{for} \quad \Omega \subseteq \mathbb{R}^{n_1 \times \cdots \times n_d}.
$$

$$
\mathcal{A}\mathcal{X}=\mathcal{B}
$$

where $\bm{\mathcal{A}}:\R^{n_1\times\cdots\times n_d}\to\R^{n_1\times\cdots\times n_d}$ is a multilinear operator and $\mathcal{B}\in\R^{n_1\times\cdots\times n_d}$ a tensor.

For large scale-simulations we have to take into account

- memory costs $\mathcal{O}(n^d)$
- computational model
- numerical method

Tensor Train or Matrix Product States [Oseledets [2011\]](#page-37-1)

Let X a tensor of order d and dimensions $(n_1 \times \cdots \times n_d)$, then its TT-representation is given by d TT-cores s.t.

- **X**₁ a (n_1, r_1) matrix
- \mathcal{X}_i is a $(r_{i-1} \times n_i \times r_i)$ tensor
- **X**_d is a ($r_{d-1} \times n_d$) matrix

i.e., a train of matrix - third-order tensors - matrix.

The
$$
(i_1, \ldots, i_d)
$$
 element of \mathcal{X} is
\n
$$
\mathcal{X}(i_1, \ldots, i_d) = \sum_{i=1}^d \sum_{s_i=1}^{r_i} \mathbf{X}(i_1, s_1) \mathcal{X}_1(s_1, i_2, s_2) \cdots \mathbf{X}_d(s_{d-1}, i_d).
$$

The memory cost is $\mathcal{O}(dr^2n)$ where $r = \max r_i$, $n = \max n_i$ and d is the tensor order.

New variable accuracy approach

What happens if objects are compressed by TT-format at computational level?

Assumptions

- compress **tensors** at accuracy *δ* with TT-format
- store matrices and vectors at accuracy μ from standard IEEE model
- perform operation at accuracy u from standard IEEE model

new 'mixed'-precision framework

$$
fl_{\delta}(\mathcal{X} \text{ op } \mathcal{Y}) = \delta\text{-storage}(fl(\mathcal{X} \text{ op } \mathcal{Y}))
$$

$$
\delta\text{-storage}(\mathcal{Z}) = \overline{\mathcal{Z}} \qquad \text{s.t.} \qquad \frac{||\mathcal{Z} - \overline{\mathcal{Z}}||}{||\mathcal{Z}||} \leq \delta
$$

with f is the classical floating point computational function dependent on u .

Numerical linear algebra methods

Iterative solver

Generalized Minimal RESidual (GMRES)

$$
\begin{cases}\nx_1 + x_2 - 3x_3 = -10 \\
6x_2 - 2x_3 + x_4 = 7 \\
2x_3 - 3x_4 = 13\n\end{cases}
$$

Orthogonalization kernels

- Classical and Modified Gram-Schmidt (CGS, MGS)
- Gram approach
- **Householder transformation**

GMRES property [Wilkinson [1963\]](#page-38-0)

Given the linear system $Ax = b$ and a working precision u, then

GMRES is backward stable, i.e.,

$$
\eta_{A,b}(x_k) = \frac{||\mathbf{A}x_k - \mathbf{b}||}{||\mathbf{A}|| ||\mathbf{x}_k|| + ||\mathbf{b}||} \sim \mathcal{O}(u)
$$

TT-GMRES results [Dolgov [2013;](#page-36-1) Coulaud et al. [2022a\]](#page-35-2)

Convection-Diffusion problem

$$
\begin{cases}\n-\Delta U & +\mathcal{V} \cdot \nabla U = 0 \\
\mathcal{U}_{\{\mathcal{V}=1\}} & = 1\n\end{cases}
$$
 in $\Omega = [-1, 1]^3$

Orthogonalization schemes

Let $\mathbf{Q}_k = [\mathbf{q}_1, \dots, \mathbf{q}_k]$ be the orthogonal basis produced by an orthogonalization kernel, then the **Loss Of Orthogonality** is

$$
||\mathbb{I}_k - \mathbf{Q}_k^\top \mathbf{Q}_k||.
$$

It measures the quality in terms of orthogonality of the computed basis. It is linked with the linearly dependency of the input vectors $\mathbf{A}_k = [\mathbf{a}_1, \dots, \mathbf{a}_k]$, estimated through $\kappa({\bf A}_k)$.

$$
\mathcal{X}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathcal{A}_k, \texttt{max_rank} = 1) \quad \text{with} \quad \mathcal{A}_{k+1} = \frac{1}{||\mathcal{X}_{k+1}||} \mathcal{X}_{k+1}
$$

$$
\mathcal{X}_{k+1} = \texttt{TT-rounding}(\boldsymbol{\Delta}_d \mathcal{A}_k, \texttt{max_rank} = 1) \quad \text{with} \quad \mathcal{A}_{k+1} = \frac{1}{||\mathcal{X}_{k+1}||} \mathcal{X}_{k+1}
$$

Gram approach CGS $\kappa^2(\mathbf{A}_k)$ $\mathcal{O}(\delta \kappa^2(\mathbf{A}_k))$

$$
\mathcal{X}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d\mathcal{A}_k, \texttt{max_rank} = 1) \quad \text{with} \quad \mathcal{A}_{k+1} = \frac{1}{||\mathcal{X}_{k+1}||}\mathcal{X}_{k+1}
$$

CGS2 MGS2

Householder transformation

 $\mathcal{O}(\delta)$

$$
\mathcal{X}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathcal{A}_k, \texttt{max_rank} = 1) \quad \text{with} \quad \mathcal{A}_{k+1} = \frac{1}{||\mathcal{X}_{k+1}||} \mathcal{X}_{k+1}
$$

- **Gram approach** $\mathcal{O}(\delta \kappa^2(\mathbf{A}_k))$
- **CGS** $\mathcal{O}(\delta \kappa^2(\mathbf{A}_k))$
- **MGS** $\mathcal{O}(\delta \kappa(\mathbf{A}_k))$
- **CGS2** O(*δ*)
- **MGS2** O(*δ*)
- **Householder transformation** $O(δ)$

Overview

Tensor preliminary

Master's thesis

Biodiversity from spectral images

Results with Tucker model

Doctoral thesis

Numerical linear algebra

Results with Tensor-train model

Postdoctoral project

Canonical Polyadic Decomposition New CPD algorithm Conclusion

New algorithm for Canonical Polyadic Decomposition

- **formalize previous results from I. Domanov;**
- \blacksquare improve the algorithm efficiency;
- **exaluate its quality;**
- test in signal processing cases.

Figure: Prof. L. De Lathauwer, KU Leuven

Canonical Polyadic Decomposition [Hitchcock [1927;](#page-37-3) Harshman [1970;](#page-37-4) Carroll et al. [1970\]](#page-35-4)

If A is a $(n_1 \times n_2 \times n_3)$ tensor of rank R, its CPD decomposition is $\mathcal{A} = \sum$ R $r=1$ **a**^r ⊗ **b**^r ⊗ **c**^r

where $\mathbf{a}_r \in \mathbb{K}^{n_1}$, $\mathbf{b}_r \in \mathbb{K}^{n_2}$ and $\mathbf{c}_r \in \mathbb{K}^{n_3}$ with $i = 1, \ldots, R$. Its properties are

- unique under mild assumption
- **m** memory cost $\mathcal{O}(dNR)$
- NP-hard problem
- \blacksquare algorithms affected by numerical instabilities

Problem reformulation

if $\mathcal{X} = \mathbf{a}_1 \otimes \mathbf{b}_1 \otimes \mathbf{c}_1 + \ldots + \mathbf{a}_R \otimes \mathbf{b}_R \otimes \mathbf{c}_R$

then

\n
$$
\mathbf{X}^{(3)} = (\mathbf{a}_1 \otimes_K \mathbf{b}_1) \otimes \mathbf{c}_1^T + \ldots + (\mathbf{a}_R \otimes_K \mathbf{b}_R) \otimes \mathbf{c}_R^T
$$
\n
$$
\mathbf{X}^{(3)} = \n\begin{bmatrix}\n\mathbf{c}_1 \\
\mathbf{c}_1 \\
\mathbf{a}_1 \otimes_K \mathbf{b}_1\n\end{bmatrix} + \cdots + \n\begin{bmatrix}\n\mathbf{c}_R \\
\mathbf{a}_R \otimes_K \mathbf{b}_R\n\end{bmatrix}
$$
\n
$$
(\mathbf{a}_r \otimes_K \mathbf{b}_r) \in \mathcal{V} = \n\left\{\n\text{vec}(\mathbf{Z}) : \n\begin{vmatrix}\nz_{i_1 j_1} & z_{i_1 j_2} \\
z_{i_2 j_1} & z_{i_2 j_2}\n\end{vmatrix} = 0\n\right\}
$$
algebraic variety

Algebraic algorithm: high view

Let X be a $(n_1 \times n_2 \times R)$ tensor, then

$$
\mathbf{X}^{(3)} = \sum_{r=1}^R (\mathbf{a}_r \otimes_K \mathbf{b}_r) \otimes \mathbf{c}_r^{\mathcal{T}} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathcal{T}}.
$$

If $\mathsf{X} = (\mathsf{X}^{(3)})^\top$, then **X C** $=$ **C** $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^T$ Known Unknown Unknown

- 1. compute C^{−1} columns from **X** using algebraic geometry properties;
- $2.$ compute $(\textbf{A} \odot \textbf{B})$ as the transposed product of $\textbf{C}^{-1}\textbf{X};$
- ${\bf B}$. factorize $({\bf A}\odot{\bf B})=[{\bf a}_1\otimes_\kappa{\bf b}_1,\ldots,{\bf a}_R\otimes_\kappa{\bf b}_R]$ to recover ${\bf A}$ and ${\bf B};$
- 4. compute **C** by solving $(A \odot B)C = X$.

Algebraic algorithm outline

- $1.$ compute the factor matrix C^{-1} from $\mathsf{X};$
	- 1.1 compute **Q** describing the algebraic variety;
	- 1.2 compute the space $\mathcal{E}_0 = \text{null}(\mathbf{Q}) \cap \text{vec}(\text{Sym}_R^d)$ 1.2.1 if dim $\mathcal{E}_0 = R$, then compute \mathbf{C}^{-1} by a CPD of $\{\mathbf{e}_1^{\otimes d}, \dots, \mathbf{e}_R^{\otimes d}\}$ basis of \mathcal{E}_0 ; 1.2.2 if dim $\mathcal{E}_0 > R$, then compute \mathcal{E}_{h+1} such that

$$
\mathcal{E}_{h+1} = (\mathbb{K} \otimes \mathcal{E}_h) \cap \mathsf{vec}(\mathsf{Sym}^{d+h}_R)
$$

until dim $\mathcal{E}_{h+1} = R^{h+1}$ and go to step 1.2.1;

- 2. compute $({\bf A} \odot {\bf B})$ as ${\bf C}^{-1} {\bf X}$ transposed;
- 3. factorize each column of **A** ⊙ **B**) at rank-1 to retrieve **A** and **B** by SVD;
- 4. compute **C** solving $(A \odot B)^{T}C = X$.

Challenges

- **Example 1** efficiently construct **Q** and its kernel
- estimate the dimension of the intersection with Sym^{d+h}_R
- **e** efficiently construct a basis for \mathfrak{E}_h
- compute the CPD of $\{e_1^{\otimes (h+d)}\}$ $\frac{\otimes (h+d)}{1}, \ldots, \mathbf{e}_d^{\otimes (h+d)}$ $\begin{bmatrix} a^{(n+u)} \\ d \end{bmatrix}$
- **E** estimate the quality of the algorithm and its robustness

Overview

Tensor preliminary

Master's thesis

Biodiversity from spectral images

Results with Tucker model

Doctoral thesis

Numerical linear algebra

Results with Tensor-train model

Postdoctoral project

Canonical Polyadic Decomposition

New CPD algorithm

Conclusion

Wrap up

Tensor methods used in

- data analysis problem as compression methods
	- by the Tucker's decomposition
- scientific computing as new policy for computational methods
	- by the Tensor-Train decomposition
- signal processing
	- by the Canonical Polyadic Decomposition

Thank you for the attention! Questions? Advice?

References I

- Bedini, Enton (2017). "The use of hyperspectral remote sensing for mineral 螶 exploration: a review". In: Journal of Hyperspectral Remote Sensing.
- Bernardi, Alessandra, Martina Iannacito, and Duccio Rocchini (2019). "High order singular value decomposition for plant diversity estimation". In: Bollettino dell'Unione Matematica Italiana 14, pp. 557–591.
- Björck, Åke (Mar. 1967). "Solving linear least squares problems by Gram-Schmidt orthogonalization". In: BIT Numerical Mathematics 7.1, pp. 1–21.
- Carroll, J. Douglas and Jih-Jie Chang (Sept. 1970). "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition". In: Psychometrika 35.3, pp. 283–319.
- **Coulaud, Olivier, Luc Giraud, and Martina Iannacito (2022a). A note on GMRES in** TT-format. Research Report RR-9384. Inria Bordeaux Sud-Ouest.

References II

- Coulaud, Olivier, Luc Giraud, and Martina Iannacito (Nov. 2022b). On some F. orthogonalization schemes in Tensor Train format. Tech. rep. RR-9491. Inria Bordeaux - Sud-Ouest.
- **De Lathauwer, Lieven, Bart De Moor, and Joos Vandewalle (2000). "A Multilinear** Singular Value Decomposition". In: SIAM Journal on Matrix Analysis and Applications 21.4, pp. 1253–1278.
- **Dolgov, S. V. (2013). "TT-GMRES: solution to a linear system in the structured** tensor format". In: Russian Journal of Numerical Analysis and Mathematical Modelling 28.2, pp. 149–172.
- Giraud, L., J. Langou, and M. Rozloznik (2005). "The loss of orthogonality in the Gram-Schmidt orthogonalization process". In: Computers & Mathematics with Applications 50.7. Numerical Methods and Computational Mechanics, pp. 1069–1075.

References III

- Harshman, Richard A. (1970). "Foundations of the PARAFAC procedure: Models F. and conditions for an "explanatory" multi-model factor analysis". In: vol. 16. UCLA Working Papers in Phonetics. University Microfilms, Ann Arbor, Michigan, pp. 1–84.
- Hitchcock, Frank L. (1927). "The Expression of a Tensor or a Polyadic as a Sum of Products". In: Journal of Mathematics and Physics 6.1-4, pp. 164–189.
- 手 Oseledets, I. V. (2011). "Tensor-Train Decomposition". In: SIAM Journal on Scientific Computing 33.5, pp. 2295–2317.
- 螶 Stathopoulos, Andreas and Kesheng Wu (2002). "A Block Orthogonalization Procedure with Constant Synchronization Requirements". In: SIAM Journal on Scientific Computing 23.6, pp. 2165–2182.
- Tucker, Ledyard R (1966). "Some mathematical notes on three-modes factor analysis". In: Psychometrika 31.3, pp. 279–311.

References IV

- Ħ Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Vol. 32. Notes on Applied Science. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA, 1964, translated into Polish as *Bledy Zaokraglen w Procesach Algebraicznych* by PWW, Warsaw, Poland, 1967 and translated into German as Rundungsfehler by Springer-Verlag, Berlin, Germany, 1969. Reprinted by Dover Publications, New York, 1994. London, UK: HMSO, pp. $vi + 161$.
- \Box - (1965). The algebraic eigenvalue problem. en. Numerical Mathematics and Scientific Computation. Oxford, England: Clarendon Press.