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From scalars to tensors

↔

Matrix
object in Kn1×n2

set of n2 elements in Kn1

linear operator from Kn2 to Kn1

Tensor
object in Kn1×···×nd

set of (ni1 × nik ) elements in
Knj1 ×···×njℓ

multilinear operator from Knj1 ×···×njℓ

to Kni1 ×···×nik with k + ℓ = d
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Unfolding

Let X be a 3-order tensor of size (n1 × n2 × n3)

X

. . .
n1

n2
n3

→ · · ·

n3

n1

n2
X(1)

Definition: the 1-st mode matricization X(1) is a (n1 × n1n2) matrix, obtained stacking
the vectors

xi1 = vec(X (i1, ·, ·)).
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Matrix-tensor product
Let X be a (n1 × n2 × n3) tensor. If G is a (n1 × m1) matrix
Definition: the 1st mode matrix-tensor product

Y = X ×1 G

a (m1 × n2 × n3) such that

Y(j1, i2, i3) =
n1∑

i1=1
X (i1, i2, i3)G(i1, j1)

Computational: a straightforward way of getting Y the matrix-tensor product is
computing

Y = GT X(1)

and then tensorizing Y into Y.
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Master’s people
Supervisors

Figure: Prof. A. Bernardi, University of Trento Figure: Prof. D. Rocchini, University of
Bologna

algebraic geometry
algorithms for tensor decomposition

plant ecology
algorithms for biodiveristy
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Master’s project

Figure: from [Bedini 2017].

Over a time series of Europe spectral
images,

get two images from two spectral
bands (RED and NIR);
compute the normalized difference
vegetation index per pixel, i.e.,

NDVI(i , j) = NIR(i , j) − RED(i , j)
NIR(i , j) + RED(i , j)

compute a biodiversity index over the
resulting NDVI image

What happens if the NDVI image is computed from the NIR and RED spectral
images stored in a tensor and compressed?
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Tucker’s model [Tucker 1966; De Lathauwer et al. 2000]

A =
C

U1

U2

U3

If A is a (n1 × n2 × n3) tensor, its Tucker decomposition becomes
A = C ×1 U1 ×2 U2 ×3 U3

where
C is a (r1 × r2 × r3) tensor;
Ui is a (ni × ri) orthogonal matrix, called i-th factor matrix.

The memory requirement is O(rd + nr) where r = max ri , n = max ni and d is the
tensor order.
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Rényi index result [Bernardi et al. 2019]

Rényi index
Uses only pixel value frequencies

Compression at multilinear rank (i , i , 3)
with i ∈ {10, 50, 100, 500, 1000}

memory used ranges between 0.19%
and 22%;
average error per pixel ranges between
13% and 5%.
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Rao index result [Bernardi et al. 2019]

Rao index
Uses only pixel values and their frequencies

Compression at multilinear rank (i , i , 3) with i ∈ {10, 50, 100, 500, 1000}
memory used ranges between 0.19% and 22%;
average error per pixel ranges between 63% and 19%.
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Ph.D. people
Supervisors

Figure: Prof. O. Coulaud, Inria Bordeaux Figure: Prof. L. Giraud, Inria Bordeaux (usually
in Toulouse)

tensor methods
high-dimensional simulations

numerical linear algebra
finite precision arithmetic 13



Context

The problem{
L(u) = f in Ω
u = f0 in ∂Ω

for Ω ⊆ Rn1×···×nd .
(i, j)

0 1

1

∆x

∆y

AX = B
where A : Rn1×···×nd → Rn1×···×nd is a multilinear operator and B ∈ Rn1×···×nd a
tensor.
For large scale-simulations we have to take into account

memory costs O(nd)
computational model
numerical method
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Tensor Train or Matrix Product States [Oseledets 2011]

X1
X2

X3 X4 X5

r1 r2 r3 r4

n1

n2

n3
n4 n5

Let X a tensor of order d and dimensions (n1 × · · · × nd), then its TT-representation is
given by d TT-cores s.t.

X1 a (n1, r1) matrix
Xi is a (ri−1 × ni × ri) tensor
Xd is a (rd−1 × nd) matrix

i.e., a train of matrix - third-order tensors - matrix.

The (i1, . . . , id) element of X is

X (i1, . . . , id) =
d∑

i=1

ri∑
si =1

X(i1, s1)X1(s1, i2, s2) · · · Xd(sd−1, id).

The memory cost is O(dr2n) where r = max ri , n = max ni and d is the tensor order.
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New variable accuracy approach
What happens if objects are compressed by TT-format at computational level?
Assumptions

compress tensors at accuracy δ with TT-format
store matrices and vectors at accuracy u from standard IEEE model
perform operation at accuracy u from standard IEEE model

new ‘mixed’-precision framework

flδ(X op Y) = δ-storage
(
fl(X op Y)

)
δ-storage(Z) = Z s.t. ||Z − Z||

||Z||
≤ δ

with fl is the classical floating point computational function dependent on u.
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Numerical linear algebra methods

Iterative solver
Generalized Minimal RESidual
(GMRES)

Orthogonalization kernels
Classical and Modified Gram-Schmidt
(CGS, MGS)
Gram approach
Householder transformation
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GMRES property [Wilkinson 1963]
Given the linear system Ax = b and a working precision u, then

(A, b)
(A, b)

(Ã, b̃)

x

xk

u

exact

computed

exact

backward
error

forward
error

data
space

solution
space

GMRES is backward stable, i.e.,

ηA,b(xk) = ||Axk − b||
||A||||xk || + ||b||

∼ O(u)
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TT-GMRES results [Dolgov 2013; Coulaud et al. 2022a]
Convection-Diffusion problem{

−∆U +V · ∇U = 0
U{y=1} = 1

in Ω = [−1, 1]3

0 20 40 60 80 100
iteration

10 7

10 5

10 3

10 1

AM
,b

Convergence history, N = 64
 = 1e-3
 = 1e-5
 = 1e-8
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Orthogonalization schemes
Let Qk = [q1, . . . , qk ] be the orthogonal basis produced by an orthogonalization kernel,
then the Loss Of Orthogonality is

||Ik − Q⊤
k Qk ||.

It measures the quality in terms of orthogonality of the computed basis. It is linked
with the linearly dependency of the input vectors Ak = [a1, . . . , ak ], estimated through
κ(Ak).

Matrix

Source Algorithm
∣∣∣∣∣∣Ik − Q⊤

k Qk
∣∣∣∣∣∣

[Stathopoulos et al. 2002] Gram O(uκ2(Ak))
[L. Giraud et al. 2005] CGS O(uκ2(Ak))
[Björck 1967] MGS O(uκ(Ak))
[L. Giraud et al. 2005] CGS2 O(u)
[L. Giraud et al. 2005] MGS2 O(u)
[Wilkinson 1965] Householder O(u)
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TT-orthogonalization [Coulaud et al. 2022b]
Xk+1 = TT-rounding(∆dAk , max rank = 1) with Ak+1 = 1

||Xk+1||
Xk+1

Figure: Loss of orthogonality for m = 20 TT-vectors of
order d = 3 and mode size n = 15, rounding precision
δ = 10−5
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Gram approach
CGS
κ2(Ak)

O(δκ2(Ak))
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Postdoctoral project

New algorithm for Canonical Polyadic Decomposition
formalize previous results from I. Domanov;
improve the algorithm efficiency;
evaluate its quality;
test in signal processing cases.

Figure: Prof. L. De Lathauwer, KU Leuven
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Canonical Polyadic Decomposition [Hitchcock 1927; Harshman 1970; Carroll et al. 1970]

X =

c1

a1

b1 + · · · +

cR

aR

bR

If A is a (n1 × n2 × n3) tensor of rank R, its CPD decomposition is

A =
R∑

r=1
ar ⊗ br ⊗ cr

where ar ∈ Kn1 , br ∈ Kn2 and cr ∈ Kn3 with i = 1, . . . , R. Its properties are
unique under mild assumption
memory cost O(dNR)
NP-hard problem
algorithms affected by numerical instabilities
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Problem reformulation
if X = a1 ⊗ b1 ⊗ c1 + . . . + aR ⊗ bR ⊗ cR

X =

c1

a1

b1 + · · · +

cR

aR

bR

then X(3) = (a1 ⊗k b1) ⊗ cT
1 + . . . + (aR ⊗k bR) ⊗ cT

R

X(3) =
a1 ⊗k b1

c1
+ · · · +

aR ⊗k bR

cR

(ar ⊗k br ) ∈ V =
{

vec(Z) :
∣∣∣∣∣zi1j1 zi1j2
zi2j1 zi2j2

∣∣∣∣∣ = 0
}

algebraic variety
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Algebraic algorithm: high view
Let X be a (n1 × n2 × R) tensor, then

X(3) =
R∑

r=1
(ar ⊗k br ) ⊗ cT

r =
(
A ⊙ B

)
CT .

If X =
(
X(3))T , then

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute C−1 columns from X using algebraic geometry properties;
2. compute

(
A ⊙ B

)
as the transposed product of C−1X;

3. factorize
(
A ⊙ B

)
= [a1 ⊗k b1, . . . , aR ⊗k bR ] to recover A and B;

4. compute C by solving (A ⊙ B)C = X.
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Algebraic algorithm outline

X C
(
A ⊙ B

)T=

Known Unknown Unknown

1. compute the factor matrix C−1 from X;
1.1 compute Q describing the algebraic variety;
1.2 compute the space E0 = null(Q) ∩ vec(Symd

R)
1.2.1 if dim E0 = R, then compute C−1 by a CPD of {e⊗d

1 , . . . , e⊗d
R } basis of E0;

1.2.2 if dim E0 > R, then compute Eh+1 such that
Eh+1 = (K ⊗ Eh) ∩ vec(Symd+h

R )

until dim Eh+1 = Rh+1 and go to step 1.2.1;
2. compute

(
A ⊙ B) as C−1X transposed;

3. factorize each column of
(
A ⊙ B) at rank-1 to retrieve A and B by SVD;

4. compute C solving (A ⊙ B)T C = X.
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Challenges

efficiently construct Q and its kernel
estimate the dimension of the intersection with Symd+h

R
efficiently construct a basis for Eh

compute the CPD of {e⊗(h+d)
1 , . . . , e⊗(h+d)

d }
estimate the quality of the algorithm and its robustness
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Wrap up

Tensor methods used in

data analysis problem as compression methods
by the Tucker’s decomposition

scientific computing as new policy for computational methods
by the Tensor-Train decomposition

signal processing
by the Canonical Polyadic Decomposition
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Thank you for the attention!
Questions? Advice?

31



References I

Bedini, Enton (2017). “The use of hyperspectral remote sensing for mineral
exploration: a review”. In: Journal of Hyperspectral Remote Sensing.
Bernardi, Alessandra, Martina Iannacito, and Duccio Rocchini (2019). “High order
singular value decomposition for plant diversity estimation”. In: Bollettino
dell’Unione Matematica Italiana 14, pp. 557–591.
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