

Orthogonalization schemes in tensor train format

29th Biennial Numerical Analysis Conference, June 28th 2023, Glasgow

Martina lannacito* joint work with Olivier Coulaud[†] and Luc Giraud[†]

* KU Leuven

† Centre Inria at the University of Bordeaux

The context in matrix computation

- Stochastic equations
- Uncertainty quantification
 problems
- Quantum and vibration chemistry
- Optimization
- Machine learning

reduce their problems to

Least-squaresEigenpairsLinear systems $\min_{x \in S} ||b - Ax||$ $Ax = \lambda x$ Ax = b

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1,$$

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - rac{\langle a_2, q_1
angle}{||q_1||^2} q_1,$$

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it?

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it? let $Q_k = [q_1, \dots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it? let $Q_k = [q_1, \dots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it? let $Q_k = [q_1, \ldots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$ Projections alternate subtractions

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it? let $Q_k = [q_1, \dots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$ Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

Gram-Schmidt process [Leon et al. 2013]

Given $\{a_h\}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \dots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j$$

How to make an algorithm out of it? let $Q_k = [q_1, \dots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$ Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

Are these versions equivalent in finite precision arithmetic?

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

Modified Gram-Schmidt

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

$$egin{array}{cccc} A = egin{bmatrix} 1 & 1 & 1 \ arepsilon & 0 & 0 \ 0 & arepsilon & arepsilon \ 0 & 0 & arepsilon \end{bmatrix}$$

with

Modified Gram-Schmidt

$$arepsilon = 1e - 10$$
 in fp64

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix} \qquad \text{with}$$

$$arepsilon = 1e - 10$$
 in fp64

$$Q_{ ext{cgs}} = egin{bmatrix} 1 & 0 & 0 \ arepsilon & -arepsilon & -arepsilon \ 0 & arepsilon & 0 \ 0 & 0 & arepsilon \end{bmatrix},$$

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix} \qquad \text{with}$$

$$\varepsilon = 1e - 10$$
 in fp64

$$Q_{ ext{cgs}} = egin{bmatrix} 1 & 0 & 0 \ arepsilon & -arepsilon & -arepsilon \ 0 & arepsilon & 0 \ 0 & 0 & arepsilon \end{bmatrix}, \ \langle q_2, q_3
angle = rac{1}{2}$$

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

Modified Gram-Schmidt

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix} \quad \text{with} \quad \varepsilon = 1e - 10 \quad \text{in} \quad \varepsilon$$

$$Q_{ ext{cGS}} = egin{bmatrix} 1 & 0 & 0 \ arepsilon & -arepsilon & -arepsilon \ 0 & arepsilon & 0 \ 0 & 0 & arepsilon \end{bmatrix}, \ \langle q_2, q_3
angle = rac{1}{2} \qquad Q_{ ext{MGS}} = egin{bmatrix} 1 & 0 & 0 \ arepsilon & -arepsilon & -arepsilon/2 \ 0 & arepsilon & arepsilon \ \end{pmatrix},$$

Not equivalent in general

Classical Gram-Schmidt All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^\top) a_{k+1}$

Modified Gram-Schmidt

Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

 $A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix} \quad \text{with} \quad \varepsilon = 1e - 10 \quad \text{in fp64}$

$$Q_{\text{CGS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}, \ \langle q_2, q_3 \rangle = \frac{1}{2} \qquad \qquad Q_{\text{MGS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon/2 \\ 0 & \varepsilon & -\varepsilon/2 \\ 0 & 0 & \varepsilon \end{bmatrix}, \ \langle q_1, q_3 \rangle = \varepsilon \sqrt{\frac{2}{3}}$$

This example was taken from [Björck 1996].

Loss of orthogonality

Let $Q_k = [q_1, \ldots, q_k]$ be the computed orthogonal basis, then its **loss of orthogonality** is

$$||\mathbb{I}_k - Q_k^\top Q_k||.$$

It measures the quality in terms of orthogonality of the computed basis. It is linked with the computational precision u and the linearly dependency of the input vectors $A_k = [a_1, \ldots, a_k]$, estimated through $\kappa(A_k)$.

Matrix		
Source	Algorithm	$\left\ \mathbb{I}_{k}-\boldsymbol{Q}_{k}^{ op}\boldsymbol{Q}_{k} ight\ $
[Stathopoulos et al. 2002]	Gram	$\mathcal{O}(u\kappa^2(A_k))$
[Giraud et al. 2005]	CGS	$\mathcal{O}(u\kappa^2(A_k))$
[Björck 1967]	MGS	$\mathcal{O}(u\kappa(A_k))$
[Giraud et al. 2005]	CGS2	$\mathcal{O}(u)$
[Giraud et al. 2005]	MGS2	$\mathcal{O}(u)$
[Wilkinson 1965]	Householder	$\mathcal{O}(u)$

Íngia

matrix

- + Better representation
- Curse of dimensionality

Approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Figure: from [Bi et al. 2022]

matrix

- + Better representation
- Curse of dimensionality

Figure: from [Bi et al. 2022]

Approximation techniques introduce norm-wise compression errors

Approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Let $\mathbf{x} \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ be order-d tensor, its TT-representation is

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-*d* tensor, its TT-representation is

+ The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said **TT-ranks**

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-*d* tensor, its TT-representation is

- + The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said **TT-ranks**
 - Linear combinations increase the TT-ranks

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-*d* tensor, its TT-representation is

- + The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said **TT-ranks**
 - Linear combinations increase the TT-ranks

TT-rounding [Oseledets 2011]

If z is an order-d tensor in TT-format and $\delta \in (0, 1)$, then $\overline{z} = TT-rounding(z, \delta)$ such that $\|z - \overline{z}\| \le \delta \|z\|$

In the Tensor-Train framework

compression precision δ

- norm-wise perturbation
- TT-model [Oseledets 2011]

computational precision *u*

- component-wise perturbation
- IEEE model [Higham 2002]

In the Tensor-Train framework

compression precision δ

- norm-wise perturbation
- TT-model [Oseledets 2011]

computational precision *u*

- component-wise perturbation
- IEEE model [Higham 2002]

- How to design orthogonalization kernels for tensor subspace?
- Does compression affect the loss of orthogonality?
- Are tensor results related with the known linear algebra ones?

Classical and Modified Gram-Schmidt

 $\mathcal{Q}, R = CGS(\mathcal{A}, \delta)$ $\mathcal{Q}, R = MGS(\mathcal{A}, \delta)$ Input: $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ Input: $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ 1 for i = 1, ..., m do 1 for i = 1, ..., m do 2 $\mathbf{p} = \mathbf{a}_i$ 2 $\mathbf{p} = \mathbf{a}_i$ for i = 1, ..., i - 1 do 3 for i = 1, ..., i - 1 do 3 $R(i, j) = \langle \mathbf{a}_i, \mathbf{q}_i \rangle$ $R(i,j) = \langle \mathbf{p}, \mathbf{q}_i \rangle$ 4 4 $\mathbf{p} = \mathbf{p} - R(i, j)\mathbf{q}_i$ $\mathbf{p} = \mathbf{p} - R(i, j)\mathbf{q}_i$ 5 5 end 6 6 end $\mathbf{p} = \text{TT-rounding}(\mathbf{p}, \delta)$ 7 | $\mathbf{p} = \text{TT-rounding}(\mathbf{p}, \delta)$ 7 $R(i,i) = ||\mathbf{p}||$ 8 $R(i,i) = ||\mathbf{p}||$ 8 $q_i = 1/R(i, i) p$ $q_i = 1/R(i, i) p$ 9 9 10 end 10 end **Output:** $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$ **Output:** $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$

They readily write in TT-format.

CGS and MGS with reorthogonalization

 $\mathcal{Q}, R = CGS2(\mathcal{A}, \delta)$ $\mathcal{Q}, R = MGS2(\mathcal{A}, \delta)$ Input: $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ Input: $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ 1 for i = 1, ..., m do 1 for i = 1, ..., m do $\mathbf{p}_{\mathbf{k}} = \mathbf{a}_{\mathbf{i}}$ $\mathbf{p}_{\mathbf{k}} = \mathbf{a}_{\mathbf{i}}$ 2 2 for k = 1, 2 do for k = 1, 2 do 3 3 $p_{k} = p_{k-1}$ 4 $p_{k} = p_{k-1}$ 4 for i = 1, ..., i - 1 do for i = 1, ..., i - 1 do 5 5 $R(i,j) = \langle \mathbf{p}_{k-1}, \mathbf{q}_i \rangle$ $R(i,j) = \langle \mathbf{p}_{k}, \mathbf{q}_{i} \rangle$ 6 6 $\mathbf{p}_k = \mathbf{p}_k - R(i, j)\mathbf{q}_i$ $\mathbf{p}_k = \mathbf{p}_k - R(i, j)\mathbf{q}_i$ 7 7 8 end 8 end $\mathbf{p}_k = \text{TT-rounding}(\mathbf{p}_k, \delta)$ $\mathbf{p}_k = \text{TT-rounding}(\mathbf{p}_k, \delta)$ 9 9 end end 10 10 $R(i, i) = ||\mathbf{p}_2||$ $R(i, i) = ||\mathbf{p}_2||$ 11 11 $q_i = 1/R(i, i) p_2$ $q_i = 1/R(i, i) p_2$ 12 12 13 end 13 end **Output:** $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$ **Output:** $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$

Gram approach - matrix format

Let $A = [a_1, \ldots, a_m]$, then we look for A = QR with $Q^\top Q = \mathbb{I}_m$ compute the Gram matrix

$$A^{\top}A = (R^{\top}Q^{\top})QR = R^{\top}R$$

this is (almost) the **Cholesky** factorization of $A^{\top}A$ that can be written as

$$A^{\top}A = R^{\top}R = LL^{\top}$$

with the Cholesky factor $L = R^{\top}$. Thus, it follows

$$A = QR = QL^{\top}$$

from which we obtain Q by solving a linear system.

 $\hline \begin{array}{c} \mathcal{Q}, R = \operatorname{Gram}(\mathcal{A}, \delta) \\ \hline \hline \mathbf{lnput:} \ \mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}, \ \delta \in \mathbb{R}_+ \\ 1 \ G \ \text{is} \ (m \times m) \ \text{Gram matrix from } \mathcal{A} \\ 2 \ L = \operatorname{cholesky}(G) \\ 3 \ \{\mathbf{p}_1, \dots, \mathbf{p}_m\} \ \text{from } \mathcal{A} \ \text{and} \ (L^\top)^{-1} \\ 4 \ \mathbf{for} \ i = 1, \dots, m \ \mathbf{do} \\ 5 \ \mid \ \mathbf{q}_i = \operatorname{TT-rounding}(\mathbf{p}_i, \delta) \\ 6 \ \mathbf{end} \\ \hline \mathbf{Output:} \ \mathcal{Q} = \{\mathbf{q}_1, \dots, \mathbf{q}_m\}, R \end{array}$

In TT-format the following modifications occur

- *G*(*i*, *j*) is the scalar product of **a**_{*i*} and **a**_{*j*}
- The inverse of *L*[⊤] is explicitly computed
- **p**_i is constructed as a linear combination of A elements

Householder transformation

Given a vector $x \in \mathbb{R}^n$ and a direction $y \in \mathbb{R}^n$, the Householder reflector H reflects x along y, i.e.,

$$Hx = ||x||y$$
 with $||y|| = 1$.

Thanks to its properties, H writes as

$$H = \mathbb{I}_n - \frac{2}{||z||^2} z \otimes z$$
 with $z = (x - ||x||y).$

The practical implementation of the Householder transformation kernel uses the components of the input vectors.

Remark

The Householder algorithm does **not** readily apply to tensor in TT-formats, because of the compressed nature of this format. It is described in [lannacito 2022]

Let Δ_d is be the TT-Laplacian, then $\{\mathbf{a}_k\}$ are 'Krylov tensors', i.e., $\mathbf{a}_{k+1} = \text{TT-rounding}(\Delta_d \mathbf{x}_k, \text{max}_rank = 1)$ with $\mathbf{x}_{k+1} = \frac{1}{\|\mathbf{a}_{k+1}\|} \mathbf{a}_{k+1}$

Let Δ_d is be the TT-Laplacian, then $\{\mathbf{a}_k\}$ are 'Krylov tensors', i.e., $\mathbf{a}_{k+1} = \text{TT-rounding}(\Delta_d \mathbf{x}_k, \text{max_rank} = 1)$ with $\mathbf{x}_{k+1} = \frac{1}{\|\mathbf{a}_{k+1}\|} \mathbf{a}_{k+1}$

Figure: 20 tensors of order d = 3 and mode size n = 15, compression precision $\delta = 10^{-5}$, computational precision $u = O(10^{-16})$

- Gram approach
- CGS
- MGS
- CGS2
- MGS2
- Householder transformation

Loss of orthogonality for $\{\mathbf{a}_k\}$ 'Krylov tensors'

• Gram approach

• CGS

• $\delta \kappa^2(A_k)$ with

$$A_k = [\texttt{vec}(\mathbf{a}_1), \dots \texttt{vec}(\mathbf{a}_k)]$$

then we conjecture

 $\mathcal{O}(\delta\kappa^2(A_k))$

Figure: 20 tensors of order d = 3 and mode size n = 15, compression precision $\delta = 10^{-5}$, computational precision $u = O(10^{-16})$

Loss of orthogonality for $\{\mathbf{a}_k\}$ 'Krylov tensors'

- MGS
- $\delta \kappa(A_k)$ with

$$A_k = [\texttt{vec}(\mathbf{a}_1), \dots \texttt{vec}(\mathbf{a}_k)]$$

then we conjecture

 $\mathcal{O}(\delta\kappa(A_k))$

Figure: 20 tensors of order d = 3 and mode size n = 15, compression precision $\delta = 10^{-5}$, computational precision $u = O(10^{-16})$

Loss of orthogonality for $\{\mathbf{a}_k\}$ 'Krylov tensors'

- CGS2
- MGS2
- Householder transformation then we conjecture

 $\mathcal{O}(\delta)$

Figure: 20 tensors of order d = 3 and mode size n = 15, compression precision $\delta = 10^{-5}$, computational precision $u = O(10^{-16})$

	Matrix, theoretical	TT-format, conjecture
Algorithm	$\boxed{ \left\ \mathbb{I}_k - \boldsymbol{Q}_k^\top \boldsymbol{Q}_k \right\ }$	$\left\ \mathbb{I}_k-\mathcal{Q}_k^ op\mathcal{Q}_k ight\ $
Gram	$\mathcal{O}(\mathbf{u}\kappa^2(A_k))$	$\mathcal{O}(\delta \kappa^2(\mathcal{A}_k))$
CGS	$\mathcal{O}(\mathbf{u}\kappa^2(A_k))$	$\mathcal{O}(\delta\kappa^2(\mathcal{A}_k))$
MGS	$\mathcal{O}(\underline{u}\kappa(A_k))$	$\mathcal{O}(\delta\kappa(\mathcal{A}_k))$
CGS2	$\mathcal{O}(\boldsymbol{u})$	$\mathcal{O}(\delta)$
MGS2	$\mathcal{O}(\boldsymbol{u})$	$\mathcal{O}(\delta)$
Householder	$\mathcal{O}(\boldsymbol{u})$	$\mathcal{O}(\delta)$

with u the computational precision, δ the compression precision

Ínnía-

Conclusions and perspectives

- All the 6 kernels can be generalized to the TT-framework
- Loss of orthogonality bounds appears to hold true with
 - > the compression precision δ independent from the machine architecture
 - > the compression precision δ replacing the computational one u
 - > the compression acting norm-wise rather than component-wise

More detailed results can be found at [Coulaud et al. 2022]

Conclusions and perspectives

- All the 6 kernels can be generalized to the TT-framework
- Loss of orthogonality bounds appears to hold true with
 - > the compression precision δ independent from the machine architecture
 - > the compression precision δ replacing the computational one u
 - > the compression acting norm-wise rather than component-wise

More detailed results can be found at [Coulaud et al. 2022]

What is left out?

- Theoretical proof of the loss of orthogonality bounds
- Investigating the quality of the tensor subspace spanned by the orthogonal basis

	cost in fp operations	cost in TT-rounding
Gram	$O(2nm^2)$	т
CGS	$\mathcal{O}(2nm^2)$	т
MGS	$\mathcal{O}(2nm^2)$	т
CGS2	$\mathcal{O}(4nm^2)$	2 <i>m</i>
MGS2	$\mathcal{O}(4nm^2)$	2 <i>m</i>
Householder	$O(2nm^2 - 2m^3/3)$	4 <i>m</i>

16/17 — Orthogonalization schemes in TT-format — M. Iannacito

-

Bibliography

- Y. Bi et al. "Chapter 1 Tensor decompositions: computations, applications, and challenges". In: Tensors for Data Processing. Ed. by Y. Liu. Academic Press, 2022, pp. 1–30. ISBN: 978-0-12-824447-0. DOI: 10.1016/B978-0-12-824447-0.00007-8.
- Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, 1996. DOI: 10.1137/1.9781611971484.
- Å. Björck. "Solving linear least squares problems by Gram-Schmidt orthogonalization". In: BIT Numerical Mathematics 7.1 (Mar. 1967), pp. 1–21. DOI: 10.1007/BF01934122.
- [4] O. Coulaud, L. Giraud, and M. Iannacito. On some orthogonalization schemes in Tensor Train format. Tech. rep. RR-9491. Inria Bordeaux - Sud-Ouest, Nov. 2022.
- [5] L. Giraud, J. Langou, and M. Rozložník. "The loss of orthogonality in the Gram-Schmidt orthogonalization process". In: Computers & Mathematics with Applications 50.7 (2005). Numerical Methods and Computational Mechanics, pp. 1069–1075. DOI: 10.1016/j.camva.2005.08.009.
- [6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Society for Industrial and Applied Mathematics, 2002. DOI: 10.1137/1.9780898718027.
- [7] M. Iannacito. "Numerical linear algebra and data analysis in large dimensions using tensor format". Theses. Université de Bordeaux, Dec. 2022.
- [8] S. J. Leon, Å. Björck, and W. Gander. "Gram-Schmidt orthogonalization: 100 years and more". In: Numerical Linear Algebra with Applications 20.3 (2013), pp. 492–532. DOI: 10.1002/nla.1839.
- I. V. Oseledets. "Tensor-Train Decomposition". In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2295–2317. DOI: 10.1137/090752286.
- [10] A. Stathopoulos and K. Wu, "A Block Orthogonalization Procedure with Constant Synchronization Requirements". In: SIAM Journal on Scientific Computing 23.6 (2002), pp. 2165–2182. DOI: 10.1137/S1064827500370883.
- [11] J. H. Wilkinson. The algebraic eigenvalue problem. en. Numerical Mathematics and Scientific Computation. Oxford, England: Clarendon Press, 1965.

Thanks for the attention.

Questions?

