

Orthogonalization schemes in tensor train format

29th Biennial Numerical Analysis Conference, June 28th 2023, Glasgow

Martina Iannacito[∗] joint work with Olivier Coulaud † and Luc Giraud †

Registration and travel support for this presentation was provided by the

[∗] KU Leuven † Centre Inria at the University of Bordeaux

The context in matrix computation

- Stochastic equations
- Uncertainty quantification problems
- Quantum and vibration chemistry
- Optimization
- Machine learning

reduce their problems to

Least-squares $\min_{x \in \mathcal{S}} ||b - Ax||$ **Eigenpairs** $Ax = \lambda x$

Linear systems $Ax = b$

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1=a_1,
$$

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1
$$
, $q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1$,

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis $\{q_h\}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it?

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it?

let
$$
Q_k = [q_1, \ldots, q_k]
$$
 be a $n \times k$ matrix

All projections, then subtractions

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it?

let
$$
Q_k = [q_1, \ldots, q_k]
$$
 be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it? let $Q_k = [q_1, \ldots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

Projections alternate subtractions

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it? let $Q_k = [q_1, \ldots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

Gram-Schmidt process [Leon et al. [2013\]](#page-43-0)

Given ${a_h}_h$ linearly independent vectors, we construct an orthogonal basis ${q_h}$ such that

$$
q_1 = a_1, \quad q_2 = a_2 - \frac{\langle a_2, q_1 \rangle}{||q_1||^2} q_1, \ldots \quad q_{k+1} = a_{k+1} - \sum_{j=1}^k \frac{\langle a_k, q_j \rangle}{||q_j||^2} q_j
$$

How to make an algorithm out of it? let $Q_k = [q_1, \ldots, q_k]$ be a $n \times k$ matrix

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

Are these versions equivalent in finite precision arithmetic?

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

Modified Gram-Schmidt

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

$$
A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}
$$

Modified Gram-Schmidt

with
$$
\varepsilon = 1e - 10
$$
 in fp64

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

$$
A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}
$$

Modified Gram-Schmidt

with
$$
\varepsilon = 1e - 10
$$
 in fp64

$$
Q_{\text{ccs}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix},
$$

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

$$
A = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}
$$

Modified Gram-Schmidt

with
$$
\varepsilon = 1e - 10
$$
 in fp64

$$
Q_{\text{ccss}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}, \ \langle q_2, q_3 \rangle = \tfrac{1}{2}
$$

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

T.

1

 $\overline{}$

 $\left| \right|$

 $A =$

Modified Gram-Schmidt

with
$$
\varepsilon = 1e - 10
$$
 in fp64

$$
Q_{\text{CGS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}, \ \langle q_2, q_3 \rangle = \tfrac{1}{2} \qquad \qquad Q_{\text{MGS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon/2 \\ 0 & \varepsilon & -\varepsilon/2 \\ 0 & 0 & \varepsilon \end{bmatrix},
$$

Not equivalent in general

Classical Gram-Schmidt

All projections, then subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - Q_k Q_k^{\top}) a_{k+1}$

T.

1

 $\overline{}$

 $\left| \right|$

 $A =$

Modified Gram-Schmidt

Projections alternate subtractions $q_{k+1} \leftarrow (\mathbb{I}_n - q_k \otimes q_k) \dots (\mathbb{I}_n - q_1 \otimes q_1) a_{k+1}$

with
$$
\varepsilon = 1e - 10
$$
 in fp64

$$
Q_{\text{CCS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}, \, \langle q_2, q_3 \rangle = \tfrac{1}{2} \qquad \qquad Q_{\text{MGS}} = \begin{bmatrix} 1 & 0 & 0 \\ \varepsilon & -\varepsilon & -\varepsilon/2 \\ 0 & \varepsilon & -\varepsilon/2 \\ 0 & 0 & \varepsilon \end{bmatrix}, \, \langle q_1, q_3 \rangle = \varepsilon \sqrt{\tfrac{2}{3}}
$$

This example was taken from [Björck [1996\]](#page-43-1).

Loss of orthogonality

Let $Q_k = [q_1, \ldots, q_k]$ be the computed orthogonal basis, then its **loss of orthogonality** is

$$
||\mathbb{I}_k-Q_k^\top Q_k||.
$$

It measures the quality in terms of orthogonality of the computed basis. It is linked with the computational precision u and the linearly dependency of the input vectors $A_k = [a_1, \ldots, a_k]$, estimated through $\kappa(A_k)$.

Ínría

 Γ \mathbf{E}

- **+** Better representation
- **-** Curse of dimensionality

Approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Figure: from [Bi et al. [2022\]](#page-43-6)

 Γ \mathbf{E}

- **+** Better representation
- **-** Curse of dimensionality

Approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Figure: from [Bi et al. [2022\]](#page-43-6)

Approximation techniques introduce **norm-wise** compression errors

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-d tensor, its TT-representation is

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-d tensor, its TT-representation is

 $+$ The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said <code>TT-ranks</code>

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-d tensor, its TT-representation is

- $+$ The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said <code>TT-ranks</code>
- **-** Linear combinations increase the TT-ranks

Let $\mathbf{x} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ be order-d tensor, its TT-representation is

- $+$ The storage cost is $\mathcal{O}(dnr^2)$ with $r = \max\{r_i\}$, said <code>TT-ranks</code>
- **-** Linear combinations increase the TT-ranks

TT-rounding [Oseledets [2011\]](#page-43-7)

If **z** is an order-d tensor in TT-format and $\delta \in (0,1)$, then \bar{z} = TT-rounding(z , δ) such that ∥**z** − **z**∥ ≤ δ∥**z**∥

In the Tensor-Train framework

compression precision δ

- norm-wise perturbation
- TT-model [Oseledets [2011\]](#page-43-7)

computational precision u

- component-wise perturbation
- IEEE model [Higham [2002\]](#page-43-8)

In the Tensor-Train framework

compression precision δ

- norm-wise perturbation
- TT-model [Oseledets [2011\]](#page-43-7)

computational precision u

- component-wise perturbation
- IEEE model [Higham [2002\]](#page-43-8)

- How to design orthogonalization kernels for tensor subspace?
- Does compression affect the loss of orthogonality?
- Are tensor results related with the known linear algebra ones?

Classical and Modified Gram-Schmidt

 $Q, R = CGS(\mathcal{A}, \delta)$ **Input:** $A = \{a_1, \ldots, a_m\}, \delta \in \mathbb{R}_+$ **1 for** $i = 1, ..., m$ **do** 2 **p** = a_i **3 for** $j = 1, ..., i - 1$ **do 4** \vert \vert $R(i,j) = \langle a_i, q_j \rangle$ **5 p** = **p** $-R(i,j)$ **q 6 end 7 p** = TT-rounding(**p**, δ) **8** | $R(i, i) = ||p||$ **9 q**_i = $1/R(i, i)$ **p 10 end Output:** $Q = \{q_1, \ldots, q_m\}$, R $Q, R = MGS(\mathcal{A}, \delta)$ **Input:** $A = \{a_1, \ldots, a_m\}, \delta \in \mathbb{R}_+$ **1 for** $i = 1, ..., m$ **do** 2 **p** = a_i **3 for** $i = 1, ..., i - 1$ **do 4** \vert \vert $R(i, j) = \langle \mathbf{p}, \mathbf{q}_j \rangle$ **5 p** = **p** $-R(i,j)$ **q 6 end 7 p** = TT-rounding(**p**, δ) **8** | $R(i, i) = ||p||$ **9 q**_i = $1/R(i, i)$ **p 10 end Output:** $Q = \{q_1, \ldots, q_m\}$, R

They readily write in TT-format.

CGS and MGS with reorthogonalization

Q, R = CGS2(A, \delta)			
Input:	$A = \{a_1, \ldots, a_m\}, \delta \in \mathbb{R}_+$	Input:	$A = \{a_1, \ldots, a_m\}, \delta \in \mathbb{R}_+$
1 for $i = 1, \ldots, m$ do	1 for $i = 1, \ldots, m$ do		
2	$p_k = a_i$	2	$p_k = a_i$
3	$\mathbf{p}_k = \mathbf{p}_{k-1}$	3	$\mathbf{p}_k = \mathbf{a}_i$
4	$\mathbf{p}_k = \mathbf{p}_{k-1}$	4	$\mathbf{p}_k = \mathbf{p}_{k-1}$
5	$\mathbf{p}_k = \mathbf{p}_{k-1}$	5	$\mathbf{p}_k = \mathbf{p}_{k-1}$
6	$R(i,j) = \langle \mathbf{p}_{k-1}, \mathbf{q}_j \rangle$	6	$R(i,j) = \langle \mathbf{p}_k, \mathbf{q}_j \rangle$
7	$\mathbf{p}_k = \mathbf{p}_k - R(i,j)\mathbf{q}_j$	7	$\mathbf{p}_k = \mathbf{p}_k - R(i,j)\mathbf{q}_j$
8	$\mathbf{p}_k = \text{Tr}-\text{rounding}(\mathbf{p}_k, \delta)$	9	$\mathbf{p}_k = \text{Tr}-\text{rounding}(\mathbf{p}_k, \delta)$
10	$\mathbf{p}_i = 1/R(i,j) \mathbf{p}_2$	12 </td	

Gram approach - matrix format

Let $A = [a_1, \ldots, a_m]$, then we look for $A = QR$ with $Q^{\top} Q = \mathbb{I}_m$ compute the Gram matrix

$$
A^{\top}A=(R^{\top}Q^{\top})QR=R^{\top}R
$$

this is (almost) the <code>Cholesky</code> factorization of $A^\top A$ that can be written as

$$
A^{\top}A = R^{\top}R = LL^{\top}
$$

with the Cholesky factor $\mathsf{L} = \mathsf{R}^\top.$ Thus, it follows

$$
A = QR = QL^\top
$$

from which we obtain Q by solving a linear system.

 $Q, R = \text{Gram}(\mathcal{A}, \delta)$ **Input:** $\mathcal{A} = \{a_1, \ldots, a_m\}, \delta \in \mathbb{R}_+$ **1** G is $(m \times m)$ Gram matrix from $\mathcal A$ 2 $L = \text{cholesky}(G)$ **3** $\{ \boldsymbol{\mathsf{p}}_1, \ldots, \boldsymbol{\mathsf{p}}_m \}$ from $\mathcal A$ and $(L^\top)^{-1}$ **4 for** $i = 1, ..., m$ **do 5 q**_i = TT-rounding(\mathbf{p}_i , δ) **6 end Output:** $Q = \{q_1, \ldots, q_m\}$, R

In TT-format the following modifications occur

- $G(i, j)$ is the scalar product of \mathbf{a}_i and \mathbf{a}_j
- The inverse of L^{\top} is explicitly computed
- **p**ⁱ is constructed as a linear combination of A elements

Householder transformation

Given a vector $x \in \mathbb{R}^n$ and a direction $y \in \mathbb{R}^n$, the Householder reflector H reflects x along y , i.e.,

$$
Hx = ||x||y
$$
 with $||y|| = 1$.

Thanks to its properties, H writes as

$$
H=\mathbb{I}_n-\frac{2}{\vert |z|\vert^2}z\otimes z\qquad\text{with}\qquad z=(x-\vert |x|\vert y).
$$

The practical implementation of the Householder transformation kernel uses the components of the input vectors.

Remark

The Householder algorithm does **not** readily apply to tensor in TT-formats, because of the compressed nature of this format. It is described in [Iannacito [2022\]](#page-43-9)

Let Δ_d is be the TT-Laplacian, then $\{a_k\}$ are 'Krylov tensors', i.e., $\mathbf{a}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{x}_k, \texttt{max_rank} = 1)$ with $\mathbf{x}_{k+1} = \frac{1}{\|\mathbf{a}\|^2}$ ∥**a**k+1∥ **a**k+¹

Let Δ_d is be the TT-Laplacian, then $\{a_k\}$ are 'Krylov tensors', i.e., $\mathbf{a}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{x}_k, \texttt{max_rank} = 1)$ with $\mathbf{x}_{k+1} = \frac{1}{\|\mathbf{a}\|^2}$ ∥**a**k+1∥ **a**k+¹

Figure: 20 tensors of order $d = 3$ and mode size $n = 15$, compression precision $\delta = 10^{-5}$, computational precision $u = \mathcal{O}(10^{-16})$

- **Gram approach**
- **CGS**
- **MGS**
- **CGS2**
- **MGS2**
- **Householder transformation**

Loss of orthogonality for $\{a_k\}$ 'Krylov tensors'

• **Gram approach**

• **CGS**

• $\delta \kappa^2(A_k)$ with

$$
A_k = [\text{vec}(\mathbf{a}_1), \dots \text{vec}(\mathbf{a}_k)]
$$

then we conjecture

 $\mathcal{O}(\delta \kappa^2(A_k))$

Figure: 20 tensors of order $d = 3$ and mode size $n=15$, compression precision $\delta=10^{-5}$, computational precision $u = \mathcal{O}(10^{-16})$

Loss of orthogonality for $\{a_k\}$ 'Krylov tensors'

- **MGS**
- $\delta \kappa(A_k)$ with

$$
A_k = [\text{vec}(\mathbf{a}_1), \dots \text{vec}(\mathbf{a}_k)]
$$

then we conjecture

 $\mathcal{O}(\delta \kappa(A_k))$

Figure: 20 tensors of order $d = 3$ and mode size $n=15$, compression precision $\delta=10^{-5}$, computational precision $u = \mathcal{O}(10^{-16})$

Loss of orthogonality for $\{a_k\}$ 'Krylov tensors'

- **CGS2**
- **MGS2**
- **Householder transformation** then we conjecture

 $\mathcal{O}(\delta)$

Figure: 20 tensors of order $d = 3$ and mode size $n=15$, compression precision $\delta=10^{-5}$, computational precision $u = \mathcal{O}(10^{-16})$

with μ the computational precision, δ the compression precision

Conclusions and perspectives

- All the 6 kernels can be generalized to the TT-framework
- Loss of orthogonality bounds appears to hold true with
	- $>$ the compression precision δ independent from the machine architecture
	- $>$ the compression precision δ replacing the computational one u
	- $>$ the compression acting norm-wise rather than component-wise

More detailed results can be found at [\[Coulaud et al. 2022\]](https://hal.inria.fr/hal-03850387v1)

Conclusions and perspectives

- All the 6 kernels can be generalized to the TT-framework
- Loss of orthogonality bounds appears to hold true with
	- $>$ the compression precision δ independent from the machine architecture
	- $>$ the compression precision δ replacing the computational one u
	- $>$ the compression acting norm-wise rather than component-wise

More detailed results can be found at [\[Coulaud et al. 2022\]](https://hal.inria.fr/hal-03850387v1)

What is left out?

- Theoretical proof of the loss of orthogonality bounds
- Investigating the quality of the tensor subspace spanned by the orthogonal basis

Ingio-

16/17 — Orthogonalization schemes in TT-format — M. Iannacito

٠

Bibliography

- [1] Y. Bi et al. "Chapter 1 - Tensor decompositions: computations, applications, and challenges". In: Tensors for Data Processing. Ed. by Y. Liu. Academic Press, 2022, pp. 1-30, ISBN: 978-0-12-824447-0. DOI: [10.1016/B978-0-12-824447-0.00007-8](https://doi.org/10.1016/B978-0-12-824447-0.00007-8).
- [2] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, 1996. poi: [10.1137/1.9781611971484](https://doi.org/10.1137/1.9781611971484).
- [3] Å. Björck. "Solving linear least squares problems by Gram-Schmidt orthogonalization". In: BIT Numerical Mathematics 7.1 (Mar. 1967), pp. 1-21. DOI: [10.1007/BF01934122](https://doi.org/10.1007/BF01934122).
- [4] O. Coulaud, L. Giraud, and M. Iannacito. On some orthogonalization schemes in Tensor Train format. Tech. rep. RR-9491. Inria Bordeaux - Sud-Ouest, Nov. 2022.
- [5] L. Giraud, J. Langou, and M. Rozložník. "The loss of orthogonality in the Gram-Schmidt orthogonalization process". In: Computers & Mathematics with Applications 50.7 (2005). Numerical Methods and Computational Mechanics, pp. 1069–1075. doi: [10.1016/j.camwa.2005.08.009](https://doi.org/10.1016/j.camwa.2005.08.009).
- [6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Society for Industrial and Applied Mathematics, 2002. DOI: [10.1137/1.9780898718027](https://doi.org/10.1137/1.9780898718027).
- [7] M. Iannacito. "Numerical linear algebra and data analysis in large dimensions using tensor format". Theses. Université de Bordeaux, Dec. 2022.
- [8] S. J. Leon, Å. Björck, and W. Gander. "Gram-Schmidt orthogonalization: 100 years and more". In: Numerical Linear Algebra with Applications 20.3 (2013), pp. 492-532. poi: [10.1002/nla.1839](https://doi.org/10.1002/nla.1839).
- [9] I. V. Oseledets. "Tensor-Train Decomposition". In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2295–2317. doi: [10.1137/090752286](https://doi.org/10.1137/090752286).
- [10] A. Stathopoulos and K. Wu. "A Block Orthogonalization Procedure with Constant Synchronization Requirements". In: SIAM Journal on Scientific Computing 23.6 (2002), pp. 2165-2182. DOI: [10.1137/S1064827500370883](https://doi.org/10.1137/S1064827500370883).
- [11] J. H. Wilkinson. The algebraic eigenvalue problem. en. Numerical Mathematics and Scientific Computation. Oxford, England: Clarendon Press, 1965.

Thanks for the attention.

Questions?

