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The context in matrix computation

• Stochastic equations
• Uncertainty quantification

problems
• Quantum and vibration

chemistry
• Optimization
• Machine learning

reduce their problems to

Least-squares
min
x∈S
||b − Ax ||

Eigenpairs
Ax = λx

Linear systems
Ax = b
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From theory to coding: an example I
Gram-Schmidt process [Leon et al. 2013]
Given {ah}h linearly independent vectors, we construct an
orthogonal basis {qh} such that

q1 = a1,

. . . qk+1 = ak+1 −
k∑

j=1

⟨ak , qj⟩
||qj ||2

qj

How to make an algorithm out of it?
let Qk = [q1, . . . , qk ] be a n × k matrix

All projections, then subtractions

qk+1 ← (In − QkQ⊤
k )ak+1

Projections alternate subtractions

qk+1 ← (In − qk ⊗ qk) . . . (In − q1 ⊗ q1)ak+1

Are these versions equivalent in finite precision arithmetic?
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From theory to coding: an example II
Not equivalent in general

Classical Gram-Schmidt
All projections, then subtractions

qk+1 ← (In − QkQ⊤
k )ak+1

Modified Gram-Schmidt
Projections alternate subtractions

qk+1 ← (In − qk ⊗ qk) . . . (In − q1 ⊗ q1)ak+1

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

 with ε = 1e − 10 in fp64

QMGS =


1 0 0
ε −ε −ε/2
0 ε −ε/2
0 0 ε

 ,

This example was taken from [Björck 1996].
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2
3
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Loss of orthogonality
Let Qk = [q1, . . . , qk ] be the computed orthogonal basis, then its
loss of orthogonality is

||Ik − Q⊤
k Qk ||.

It measures the quality in terms of orthogonality of the computed
basis. It is linked with the computational precision u and the
linearly dependency of the input vectors Ak = [a1, . . . , ak ],
estimated through κ(Ak).

Matrix

Source Algorithm
∥∥Ik − Q⊤

k Qk
∥∥

[Stathopoulos et al. 2002] Gram O(uκ2(Ak))
[Giraud et al. 2005] CGS O(uκ2(Ak))
[Björck 1967] MGS O(uκ(Ak))
[Giraud et al. 2005] CGS2 O(u)
[Giraud et al. 2005] MGS2 O(u)
[Wilkinson 1965] Householder O(u)
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The advent of tensors

1 8 4
9 2 2
7 1 6




1 8 4
9 2 2
7 1 6


5 3 1

2 4 9
6 8 7




since the last century
tensormatrix

+ Better representation
- Curse of dimensionality

Approximation techniques were proposed

• Canonical Polyadic
• Tucker
• Hierarchical Tucker
• Tensor-Train

Figure: from [Bi et al. 2022]

Approximation techniques introduce norm-wise compression errors
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Tensor Train formalism

scalar
n

vector

ri

n

matrix

ri

n

ri+1

order-3 tensor

Let x ∈ Rn1×···×nd be order-d tensor, its TT-representation is

n1

r1

n2

r2

ni−1

ri−1

ni

ri

ni+1

ri+1

nd−1

rd−1

nd

+ The storage cost is O(dnr2) with r = max{ri}, said TT-ranks
- Linear combinations increase the TT-ranks

TT-rounding [Oseledets 2011]
If z is an order-d tensor in TT-format and δ ∈ (0, 1), then
z = TT-rounding(z, δ) such that

∥z− z∥ ≤ δ∥z∥
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The questions

In the Tensor-Train framework

compression precision δ

• norm-wise perturbation
• TT-model [Oseledets 2011]

computational precision u
• component-wise perturbation
• IEEE model [Higham 2002]

• How to design orthogonalization kernels for tensor subspace?
• Does compression affect the loss of orthogonality?
• Are tensor results related with the known linear algebra ones?
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Classical and Modified Gram-Schmidt

Q,R = CGS(A, δ)
Input: A = {a1, . . . , am}, δ ∈ R+

1 for i = 1, . . . ,m do
2 p = ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨ai , qj⟩
5 p = p− R(i , j)qj
6 end
7 p = TT-rounding(p, δ)
8 R(i , i) = ||p||
9 qi = 1/R(i , i)p

10 end
Output: Q = {q1, . . . ,qm}, R

Q,R = MGS(A, δ)
Input: A = {a1, . . . , am}, δ ∈ R+

1 for i = 1, . . . ,m do
2 p = ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = ⟨p, qj⟩
5 p = p− R(i , j)qj
6 end
7 p = TT-rounding(p, δ)
8 R(i , i) = ||p||
9 qi = 1/R(i , i)p

10 end
Output: Q = {q1, . . . ,qm}, R

They readily write in TT-format.
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CGS and MGS with reorthogonalization

Q,R = CGS2(A, δ)
Input: A = {a1, . . . , am}, δ ∈ R+

1 for i = 1, . . . ,m do
2 pk = ai
3 for k = 1, 2 do
4 pk = pk−1
5 for j = 1, . . . , i − 1 do
6 R(i , j) = ⟨pk−1, qj⟩
7 pk = pk − R(i , j)qj
8 end
9 pk = TT-rounding(pk , δ)

10 end
11 R(i , i) = ||p2||
12 qi = 1/R(i , i)p2
13 end

Output: Q = {q1, . . . ,qm}, R

Q,R = MGS2(A, δ)
Input: A = {a1, . . . , am}, δ ∈ R+

1 for i = 1, . . . ,m do
2 pk = ai
3 for k = 1, 2 do
4 pk = pk−1
5 for j = 1, . . . , i − 1 do
6 R(i , j) = ⟨pk , qj⟩
7 pk = pk − R(i , j)qj
8 end
9 pk = TT-rounding(pk , δ)

10 end
11 R(i , i) = ||p2||
12 qi = 1/R(i , i)p2
13 end

Output: Q = {q1, . . . ,qm}, R
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Gram approach - matrix format

Let A = [a1, . . . , am], then we look for A = QR with Q⊤Q = Im
compute the Gram matrix

A⊤A = (R⊤Q⊤)QR = R⊤R

this is (almost) the Cholesky factorization of A⊤A that can be
written as

A⊤A = R⊤R = LL⊤

with the Cholesky factor L = R⊤. Thus, it follows

A = QR = QL⊤

from which we obtain Q by solving a linear system.
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written as

A⊤A = R⊤R = LL⊤

with the Cholesky factor L = R⊤. Thus, it follows

A = QR = QL⊤

from which we obtain Q by solving a linear system.

Q,R = Gram(A, δ)
Input: A = {a1, . . . , am}, δ ∈ R+

1 G is (m ×m) Gram matrix from A
2 L = cholesky(G)

3 {p1, . . . ,pm} from A and (L⊤)−1

4 for i = 1, . . . ,m do
5 qi = TT-rounding(pi , δ)
6 end

Output: Q = {q1, . . . ,qm}, R

In TT-format the following
modifications occur
• G(i , j) is the scalar product

of ai and aj

• The inverse of L⊤ is
explicitly computed
• pi is constructed as a linear

combination of A elements
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Householder transformation
Given a vector x ∈ Rn and a direction y ∈ Rn, the Householder
reflector H reflects x along y , i.e.,

Hx = ||x ||y with ||y || = 1.

Thanks to its properties, H writes as

H = In −
2
||z ||2 z ⊗ z with z = (x − ||x ||y).

The practical implementation of the Householder transformation
kernel uses the components of the input vectors.

Remark
The Householder algorithm does not readily apply to tensor in
TT-formats, because of the compressed nature of this format. It is
described in [Iannacito 2022]
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Numerical experiments in TT-format
Let ∆d is be the TT-Laplacian, then {ak} are ‘Krylov tensors’, i.e.,

ak+1 = TT-rounding(∆dxk , max rank = 1) with xk+1 =
1

∥ak+1∥
ak+1

Figure: 20 tensors of order d = 3 and mode
size n = 15, compression precision δ = 10−5,
computational precision u = O(10−16)

13/17 — Orthogonalization schemes in TT-format — M. Iannacito



Numerical experiments in TT-format
Let ∆d is be the TT-Laplacian, then {ak} are ‘Krylov tensors’, i.e.,

ak+1 = TT-rounding(∆dxk , max rank = 1) with xk+1 =
1

∥ak+1∥
ak+1

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

Figure: 20 tensors of order d = 3 and mode
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• Gram approach

• CGS

• MGS

• CGS2

• MGS2

• Householder transformation
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Numerical experiments in TT-format
Loss of orthogonality for {ak} ‘Krylov tensors’

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

Figure: 20 tensors of order d = 3 and mode
size n = 15, compression precision δ = 10−5,
computational precision u = O(10−16)

• Gram approach
• CGS
• δκ2(Ak) with

Ak = [vec(a1), . . . vec(ak)]

then we conjecture

O(δκ2(Ak))
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Figure: 20 tensors of order d = 3 and mode
size n = 15, compression precision δ = 10−5,
computational precision u = O(10−16)

• MGS
• δκ(Ak) with

Ak = [vec(a1), . . . vec(ak)]

then we conjecture

O(δκ(Ak))
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Numerical experiments in TT-format
Loss of orthogonality for {ak} ‘Krylov tensors’
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Figure: 20 tensors of order d = 3 and mode
size n = 15, compression precision δ = 10−5,
computational precision u = O(10−16)

• CGS2
• MGS2
• Householder transformation

then we conjecture

O(δ)
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Loss of orthogonality: matrix vs tensor

Matrix, theoretical TT-format, conjecture

Algorithm
∥∥Ik − Q⊤

k Qk
∥∥ ∥∥Ik −Q⊤

k Qk
∥∥

Gram O(uκ2(Ak)) O(δκ2(Ak))
CGS O(uκ2(Ak)) O(δκ2(Ak))
MGS O(uκ(Ak)) O(δκ(Ak))
CGS2 O(u) O(δ)
MGS2 O(u) O(δ)
Householder O(u) O(δ)

with u the computational precision, δ the compression precision
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Conclusions and perspectives

• All the 6 kernels can be generalized to the TT-framework

• Loss of orthogonality bounds appears to hold true with
> the compression precision δ independent from the machine

architecture
> the compression precision δ replacing the computational one u
> the compression acting norm-wise rather than component-wise

More detailed results can be found at [Coulaud et al. 2022]

What is left out?
• Theoretical proof of the loss of orthogonality bounds

• Investigating the quality of the tensor subspace spanned by
the orthogonal basis
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Computational costs: matrix vs tensor

cost in fp operations cost in TT-rounding

Gram O(2nm2) m
CGS O(2nm2) m
MGS O(2nm2) m
CGS2 O(4nm2) 2m
MGS2 O(4nm2) 2m
Householder O(2nm2 − 2m3/3) 4m
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Thanks for the attention.
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