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Introduction

Estimating plant biodiversity is a crucial challenge for the present days. Tech-
nological improvements provide new ways for such ecological issue. In particular
remote sensing has already proved its power. Satellites collect photos of territories
at different wavelengths, generating multispectral images. Since plants reflect and
absorb in a specific way sunlight, ecologists use matrices derived from these multis-
pectral photos to estimate plant biodiversity of a certain area. We mainly focus on
two indexes:

• Rényi, which takes into account only the frequencies of matrix entries;

• Rao, which takes into account both the frequencies of matrix entries and the
values themselves of entries.

However working with these data is expensive in terms of storage memory use. Sim-
ilar difficulties in handling big data difficult are extremely common nowadays, but
mathematical solutions have been developed in these years. Usually big data are
stored in tensors, a generalisation of matrices, and treated with specific tensor tech-
niques. In applications a very common tensor technique is High Order Singular Value
Decomposition, HOSVD. Even if there are results of HOSVD applications over multis-
pectral images, as far as we know this is the first attempt in the plant ecology filed.
The high storage dimensions of multispectral images cause many difficulties to a not
professional laptop in testing the implementations of biodiversity index computation
algorithms. Therefore we apply two recent variants of HOSVD to spectral images
and we compute biodiversity indexes over the compressed data generated. With
the help of University cluster, we tested the HOSVD for two different datasets and
provide results about the two biodiversity indexes presented previously. Moreover
for completeness we also organise the starting data in two different ways, for both
the datasets. Since this is a first attempt we are not able to compare our results with
others. However from our data we conclude that for Rényi index compressing data is
extremely advantageous since the information lost in estimating biodiversity is few.
For Rao index the results are not as satisfactory, even if they are promising. Using
approximatively 15% of the original data information, in the first case we show that
the average error per pixel is between 5.5% and 7.5%, while in the second one error
per pixel is between 17% and 19%. Moreover we present images of the elements
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which realise the minimum and the maximum error for different indexes and for dif-
ferent datasets. It is stunning how difficult is for human eyes perceive differences
comparing indexes computed from original and approximated data, even when the
approximation error is not very low.

Now we briefly illustrate the thesis structure. In the first chapter we introduce
briefly remote sensing history and fundaments. Moreover we illustrate the features
of MODerate-resolution Imaging Spectroradiometer sensor, MODIS, whose data are
used in the discussion. Next we present the most significant plant aspects related
to spectral reflectance and absorbance. In conclusion to Chapter 1, we find the
Normalized Difference Vegetation Index, NDVI, definition that is as follow:

Definition. Given a region R, let RED,NIR ∈Mm×n(R) be respectively the RED
and the NIR raster band of R. The normalized difference vegetation index of region
R is NDV I ∈Mm×n(R) such that

NDVIij =
NIRij −REDij

NIRij +REDij

for every i ∈ {1, . . . ,m} and for every j ∈ {1, . . . , n}, when it is defined.

and the most used biodiversity indexes computed over them, as Rao and Rényi
index.
Here we highlight the problem we face: multispectral images, necessary to calculate
NDVIs images and consequently to estimate biodiversity, occupy huge amount of
storage memory. Therefore we look for a compression technique which can reduce
the information loss in term of biodiversity index estimation.
In the second chapter we describe the mathematical instruments we use to compress
multispectral images. After having reminded the main results of linear algebra, we
prove two central theorems:

• Singular value decomposition theorem
Given A ∈ Mm×n(K) of rank r, let σi(A) be the singular values for every
i ∈ {1, . . . , r}. Then there exist:

– two orthogonal matrices U ∈ O(m) and v ∈ O(n);

– a matrix Σ ∈ Mm×n(R) such that Σii = σi for every i ∈ {1, . . . , r} and
Σij = 0 otherwise;

such that A = UΣV T ;

• Schmidt, Mirsky, Eckhart, Young theorem
Given a matrix A ∈ Mm×n(R) of rank r, let Σ ∈ Mm×n, U ∈ O(m) and
V ∈ O(m) the matrices of the singular value decomposition as in Theorem
2.1.11. For every i ∈ {1, . . . , r} we define the matrix S(i) ∈ Mm×n(R) such
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that its (i, i) entry is the i-th singular value and the others entries are zero.
Then the best rank 1 approximation of A is given by the matrix US(1)V T , i.e.∥∥∥A− US(1)V T

∥∥∥ ≤∥∥∥A−X∥∥∥ for every X ∈Mm×n(R) of rank 1.

As conclusion of the first section of Chapter 2, we present an example of photo
compression as application of the previous theorems. However multispectral im-
ages are usually stored in tensors, a generalisation of matrices. So we revise the
main properties of tensors. Then in the last section of chapter 2 we present High
order Singular Value Decomposition which is a generalisation of Singular Value De-
composition, SVD. We mainly focus on two recent developments of this technique,
Truncated HOSVD, T-HOSVD, and Sequentially Truncated HOSVD, ST-HOSVD.
Indeed we apply these two approximation strategies in order to compress multispec-
tral data. We prove theorems related to their error compared with respect to the best
approximation error, when it is defined. Lastly we cite some recent results about
generalisation to tensors of Schmidt, Mirsky, Eckhart, Young theorem, SMEY.
In the conclusive chapter we present the data chosen for testing HOSVD techniques.
Next we describe Python implementations of T-HOSVD, ST-HOSVD and of biod-
iversity index algorithm. Lastly our approach is introduced: first we compute over
NASA NDVI images Rao and Rényi biodiversity indexes. Then we create tensors
with the spectral bands necessary to build up NDVI images. We apply T-HOSVD
and ST-HOSVD to these generated tensors and we compute new NDVI images, over
which we calculate biodiversity indexes. Finally we estimate the error made in com-
puting biodiversity indexes over NASA NDVI with respect to NDVI images from
approximated tensors.
From the reported statistics, we highlight that for Rényi index these tensors tech-
niques lead to extremely good results in terms of biodiversity estimation, while for
Rao index our results are not optimal, but still appreciable.
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Chapter 1

The ecological framework

In this chapter we will present the ecological background of the data we will use
in the following chapters.

1.1 Biodiversity and its complexity

Nowadays measuring biodiversity, particularly plant biodiversity, is a crucial is-
sue in ecology. As a matter of fact the loss of biodiversity is of public domain, but
currently we can not estimate the scale of phenomenon. The existence and the per-
sistence of biodiversity are decisive for the present and future life of human beings.
Indeed not only food, fibres, fuel, pharmaceuticals are based on it, but it also reg-
ulates climate, purifies water, affects soil formation, prevents flood. Last but not
least the heterogeneity of life beings has a significant impact on aesthetic and cul-
ture, [eco1; eco2].

Let us properly define the concept of biodiversity.

Definition 1.1.1. The Convention on Biological Diversity defined biodiversity as
the variability, i.e. the set of all the phenotypic and genotypic differences among
living organisms, from all sources, including, inter alia, terrestrial, marine and other
aquatic ecosystems and the ecological complexes of which they are part; this includes
diversity within species, between species and of ecosystems, cf. [eco3].

Scientists, national and international organizations report a huge amount of evid-
ences of biodiversity loss. The World Conservation Union, IUCN, indicated in 2002
that one tenth of all the world’s bird species and a quarter of its mammals are
threatened with extinction, from one to two third of fish, mussels and Crustacea
share the same fate. Other studies highlighted that the shark populations in the
Northwest Atlantic was reduced as much as 75% since 1986 [eco4], while amphibian
have decreased by around 80% in 50 years [eco5]. More than this alarming signals
come also from plant world: from 1999 up to 2015 we assisted of 3% decline of the
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total forest area, [eco6]. It could seem that estimating the general undergoing biod-
iversity loss is easy, given all these information, but much of the present knowledge
is too fragmentary and selective for taking long term decisions.
Besides collecting data is a quite time expensive process. Not only they must be col-
lected, but also geo-referenced. Such information, which are mainly stored in museum
collections, forestry and wildlife department archives, but also into the notebooks of
amateur naturalists. Even though the cost per observation is probably very low, the
time cost is not negligible.
Lastly we notice that different data lead to different forms of biodiversity estima-
tions. For example we can focus on the changes of the ecosystem behaviour or we
can count manually the different species.
Another central way of measuring biodiversity uses the extent of the habitat. Know-
ing the extent and the rate of change of an habitat can explain the modifications
of the population and the species linked with it. Obviously collecting data related
to huge territory is not practical through ground surveys: group of ecology experts
must cover long distances and collect information, cf. [eco7]. However technological
progress provided new instrument, which can help ecologists. As a matter of fact the
advent of satellites has made possible having real images of a territory, even with a
remarkable quality. This approach has created the remote sensing discipline. Many
definitions have been proposed during the years for this subject. We refer to the one
presented by [eco8].

Definition 1.1.2. Remote sensing is the practice of deriving information about the
Earth’s land and water surfaces using images acquired from an overhead perspect-
ive, using electromagnetic radiation in one or more regions of the electromagnetic
spectrum, reflected or emitted from the Earth’s surface.

This field of study is based on a well known physical phenomenon: different
materials and different organisms absorb and reflect electromagnetic radiations dif-
ferently. In function of its frequencies, measured in Hertz, the radiations or waves
will interact differently with the matter and will get different names, cf. [eco9]:

• Radio waves have frequencies whose order is between 103Hz and 109Hz. Their
main application is in telecommunication, as for radios and televisions;

• Micro-waves have frequencies whose order is between 109Hz and 1011Hz. Their
are abundantly used in scientific research and in radar telecommunications;

• Infrared waves have frequencies whose order is between 1011Hz and 1014Hz.
They are internally classified in far infrared,mid infrared and near infrared
with increasing frequencies;

• Visible light collects all the waves with a frequencies between 4.3 · 1014Hz and
7.5 · 1014Hz approximatively. We call waves of these frequencies so because
human eyes can perceive them, while our brains can interpret them as colours;
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• Ultraviolet waves have frequencies between 7.5 · 1014Hz and 3 · 1017Hz. The
Sun produces ultraviolet radiations, which the atmosphere mostly absorbs;

• X-rays have frequencies between 3 ·1017Hz and 5 ·1019Hz. They are principally
used in Medicine and in Chemistry, since the damages caused to cells;

• Gamma-rays have frequencies whose order is higher than 1018Hz. They are
related to nuclear reactions.

Thanks to the inverse relation which links frequency and wavelength, we can describe
and classify radiations also with their characteristic wavelength, measured in meters.
Even if human beings can perceive just the so called visible spectrum, in remote sens-
ing other radiations are necessary and fundamental. These radiations are measured
through sensors assembled on spacecraft and craft. We can imagine these sensors
as special flying cameras. Similarly to our entertainment instruments, which let us
collect the best moments of our lives with many modalities, also these sensors can
record radiations from the Earth’s surface in different ways. They can just collect
radiations reflected by the surface of land and oceans. However it is also possible
to measure the thermic radiations produced by our planet. Lastly using lasers or
radars on the air-platform, we can illuminate the surface and collect data related
to present energy. We distinguish these modalities defining the first two as passive
remote sensing, the last one as active remote sensing. If we remind the example
of our camera, in the first modality photos are taken without flash, i.e. without
any contribution from the instrument, while in the second one the image is recorded
using an artificial illumination, i.e. the flash contributes in the registration of the
image.
Most of the modern sensors can acquire multiple images, divided in the so called
bands.

Definition 1.1.3. Bands or channels are the recorded spectral measurements.

Depending on the sensor features, we can acquire images dived into the different
bands.

Definition 1.1.4. Multi-spectral sensor can acquire from 4 up to 10 bands. Hyper-
spectral sensor can acquire more than 100 bands.

Usually in remote sensing we talk about imagery instead of images, in order to
highlight the difference between common pictures and Earth’s surface spectral meas-
urements, which have a strong quantitative nature. To understand the purposes of
remote sensing and how the it landed in the ecological studies, we will briefly retrace
the history of this discipline. As it is evident, remote sensing relies on photography.
After the chemical discoveries of Daguerre, published in 1839, the first aerial photo-
graph was taken by Gaspard-Félix Tournachon, better known as Nadar. This artist
acquired a picture of France from a tethered balloon in 1858. Obviously this was
closure to an artistic experiment rather than a scientific one. Only after the advent
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of airplanes, it was possible to know the speed, the altitude and the directions at
which photos were captured. One of the first images was taken by W. Wright in 1909
and it showed the lands near Centocelle, in Rome. The World War I boosted the
usage and the technique of aerial photography for military aims, as surveillance and
reconnaissance. However even the end of the war could not stop the improvements
of this discipline. The years between the two World Wars determined the naissance
of photogrammetry, a discipline which analyses aerial photos, and the participation
of private industry to aerial mapping collection and application. The governments
promoted the development of scientific acquisition and analysation of all the data,
whose number was increasing consistently. Moreover in the United States aerial sur-
veys were used to fight the economic depression of 1929. Indeed they could better
check the economical improvements in the rural areas. However the fate of remote
sensing and wars will cross again. As a matter of fact World War II speeded up sci-
entific and technological discoveries. For the first time it was possible to go beyond
the visible spectrum line. In addition to the surveillance of military targets, also
terrain features, as vegetation and practicability, were recorded and studied. From
the Cold War Era we could observe a progressive separation between military use, as
defence and national security, and civil applications. For our purposes, we have to
cite the studies of R. Colwell of 1956, [eco10]. For the first time this scientist iden-
tified a small unhealthy cereal crops from a coloured infrared film. He was a pioneer
in remote sensing for plant science. The advent of satellite, supported by NASA’s
research programs, gave new impetus to remote sensing. The launch of Landstat 1
in 1972, an Earth observing satellite, brought three great innovations. As first one,
data were available for large regions of the planet every day. Moreover they were
provided in digital form, stimulating consequently improvements in digital analysis.
Lastly it was used as model for the next generation of land observing satellites. Re-
mote sensing benefited also from the development of geographic information system,
which unified remote sensed and other geospatial data. In addition to the hyper-
spectral remote sensing new technologies of 90s, we remark the launch of Terra-1, a
NASA satellite. For the first time a satellite was created and used with the main
aim of monitoring changes in Earth’s ecosystem. Obviously the power of Internet of
this century enabled the diffusion and the public distribution of remote sensed data
worldwide. Near to the spread of personal navigation devices, recent studies had led
improvements in acquisition of fine-resolution imagery, with a significant increase in
the data dimension, cf. [eco8].
The data used in this thesis come from the National Aeronautics and Space Ad-
ministration, better known as NASA, cf. [eco11]. Its mission is summed up as "to
improve life here, to extend life to there, to find life beyond", [eco12]. The program
which most concerns us is the Earth Observing System, structured in the 80s. The
EOS program principally investigates variables as:

• radiations, clouds, water vapor, precipitations;

• oceans;



1.1 Biodiversity and its complexity 5

• greenhouse gases;

• surface hydrology and ecosystem processes, as land cover change;

• glaciers, sea ice, and ice sheets;

• ozone and stratospheric chemistry;

• volcanoes and climate effects of aerosols.

Part of the NASA funds are invested in improving data final product. Indeed there
are many calibration process both before the launch and after it. Physical and engin-
eering tests are conducted in laboratory to ensure the best quality in the information
acquisition. On the other side after the data collection, scientists’ teams collabor-
ate to validate and publish the data. Besides to encourage international scientific
cooperation the data are subjected to open access policy.

1.1.1 Chosen data source

Data used in the present thesis come from the MODerate-Resolution Imaging
Spectroradiometer sensor, or MODIS, built on both the satellite Terra and Aqua.
Terra was launched in 1999, while Aqua in 2002. Thanks to technological improve-
ments Aqua is significantly lighter than Terra, 2934Kg insead of 5190kg. Their rota-
tion period has a lag of six hours. As one can directly image from the satellite name,
Terra main aim is observing and collecting information of lands and atmosphere,
while Aqua deals with ocean sensing. MODIS measures 36 bands in the visible and
infrared spectrum, at different resolutions. Firstly there are RED and NIR band
with pixel size of 250km and next 5 bands, still with RED and NIR, at 500m of
spatial resolution. These are extremely useful for land observation. The remaining
bands with 1km of resolution consist of monitoring images from visible spectrum,
MIR, NIR and TIR. The data are registered four times a day, twice daytime and
twice night-time. Images usually include the entire Earth’s surface.

All these data are usually stored as raster. As we will see in the following chapters
each image can be seen as a matrix, whose values represent a certain amount of grey
in white-black picture. A similar procedure is possible for satellite images.

Definition 1.1.5. Raster is a collection of numbers stored in matrix. Pixels are the
entries of the raster. Each pixel has defined spatial attributes.

Among these spatial attributes, we find:

• spatial resolution which describes the dimension of each pixel in meters. Ob-
viously higher is the spatial resolution higher will be the visible details in the
image;
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• temporal resolution which expresses the maximum theoretical rate of data avail-
ability. In other words temporal resolution estimates the frequency, at which
the satellite captures a certain areas;

• radiometric resolution which defines the number of possible unique integer
values that can be stored by the sensor in a pixel. Usually it is expressed in
bit. For example a radiometric resolution of 8 bit can store 28 unique values
per pixel, i.e. all integers between 0 and 255;

• spectral resolution corresponds to the number of bands recorded. We have seen
that MODIS can record 36 bands, i.e. its spectral resolution is 36 bands.

All these properties of the imageries are stored as metadata, i.e. data related to the
main data, which in this case are spectral images. The most common file format for
rasters is GEOTiff.

1.2 Vegetation data

We have already highlighted that different data are linked with different ecological
aims. Since the goal of this discussion is plant ecology, we will briefly describe the
main aspects of vegetal organisms.
Plants, as other living beings, are autotrophic, in other words they can manufacture
complex organic nutritive compounds from simple inorganic sources, as solar light.
The crucial step for plant survival is photosynthesis.

Definition 1.2.1. Photosynthesis process lets organisms produce molecules, in which
energy is stored in form of strong chemical bounds. The chemical equation of pho-
tosynthesis is:

6CO2 + 6H2O + light energy C6H12O6 + 6O2 ·

Photosynthesis does not take place in every possible cell of plant. In fact plants
developed specialised organic structures to boost their photosynthetic ability. The
most common leaf section, shown in Figure 1.1 consists of different stratus, listed
from the top:

• cuticle the most external upper layer, which looks like waxy and translucent;

• upper epidermis, characterised by dense specialised cells;

• palisade tissue, where there are many vertically stretched cells;

• mesophyll tissue, recognizable for its irregular cells and for frequent openings;

• lower epidermis, last layer is different from the upper one just for its stomata.
They are surrounded by guards cells, whose mission is regulating the air move-
ments into the leaves.
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Figure 1.1: Common leaf section.

Carbon dioxide, CO2, enters in the plant cells from the stomata. Moreover these
vegetal "doors" balance the moisture concentration into the entire leaf. The meso-
phyll tissue cells have a large surface, evolved to facilitate CO2 and O2 exchange,
fundamental for photosynthesis and respiration. Plants leaves developed a special
organelle, called chloroplast where the photosynthesis takes place. We find chloro-
plasts into palisade cells. Their presence makes the upper side of a leaf looks darker
than the lower ones. If water is usually collected by roots and by stem system, the
last photosynthesis ingredient, sunlight, is mostly acquired by the upper cuticle. It
evolved differently depending on the environmental conditions of the plant habitat.
Species used to live in bright areas have a thick upper cuticle, which prevents water
loss. Conversely the ones growing in shaded zones have thin cuticle, in order to max-
imize the amount of collected light. As proved by Philpoot in 1971 the cuticle diffuses
much of the available sunlight to cells and reflects poorly. Scientists discovered that
mostly visible wavelengths of sunlight reach chloroplasts. There evolution selected
the most efficient molecules to store sunlight energy, i.e. pigments.

Definition 1.2.2. Pigments molecules reflect and absorb only their own character-
istic wavelength, when they are hit by a light wave.

In the most common green vegetation there are different type of pigments so
that the spectral region of wavelengths between 0.35 µm and 0.70 µm is partially
absorbed, cf. [eco13]. The most studied plants pigments are:

• Chlorophyll a which absorbs blue visible light, with wavelength 0.43 µm and
red one, with wavelength 0.66 µm;
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• Chlorophyll b which absorbs blue visible light, with wavelength 0.45 µm and
red one, with wavelength 0.65 µm;

• Carotenes, as the well known β-Carotenes, which has a strong absorption of
blue wavelength region around 0.45 µm wavelength;

• Phycoerythrin whose absorption region is concentrated around 0.55 µm value
of wavelength, i.e. the green visible light spectral region.

• Phycocyanin which absorbs mostly the spectral regions around 0.62 µm value
of wavelength, i.e. the green and red visible light spectral region.

Even though the pigments present in vegetation are different and various, usually
chlorophyll a and b are dominant. We can notice that their action creates a hole
in the absorption spectral region, centred around 0.45 µm wavelength, which corres-
ponds to the visible green spectrum. The appreciable consequence is the usual green
colour of healthy leaves. Moreover we have surely observed that when our plants are
overwatered, under-lighted or simply it is fall time, their leaves becomes yellow, red
or brown. The biological explanation of this event is linked with pigments. Indeed
in stressful condition or for some vegetal species just coming winter, the chlorophyll
disappears, letting carotenes and other pigments becoming dominant.
Consequently scientists can detect seasonal senescence, stress and health of vegeta-
tion using of remote sensing instruments to control the chlorophyll absorption. In-
deed it represents a significant biophysical variable, which supported by others data
can describe the ecological status of a system. So far we have focused the interaction
between visible spectrum and vegetal organisms. However more subtle spectral in-
formation can be collected through sensor with higher spectral resolution. Spectral
images from healthy green leaves show that almost the entire NIR wavelength range
is not absorbed. Reminding that we use infrared radiations to quickly defrost food,
we intuitively understand this evolutionary selection. If plants could have absorbed
NIR wavelengths so efficiently as they absorb visible light, their proteins and con-
sequently their entire cellular structure would have get too hot and so chemically
denatured, i.e. damaged. Evolutionary pressure leaded vegetal organisms to a re-
flection rate of 40 to 60 percent and to a transmission rate to the underling leaves of
40 to 60 percent of NIR wavelengths radiations. Hence, the absorption rate is usually
around 5 to 10 percent. Moreover, biologists observed an interesting phenomenon of
leaves reflectance, called leaf additive reflectance. When a plant has a great number
of leaves layers, it presents higher infrared reflectance rate. On the other side if the
leaves are sparse, the NIR reflectance rate will be lower with respect to the previous
case. As a matter of fact if we assume that at the first layer from the top each leaf
will reflect 50% of the total NIR radiation and the remaining infrared radiation will
be transmitted at the second layer, the second layers leaves will reflect only half of
the half original NIR wave, i.e. 25% of the original radiation. From this second
stratum, reflected NIR will hit again foliage from the first layer, which again reflects
only 12.5% of the original radiation. In conclusion we get that 62.5% of the total
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NIR radiation is reflected, with a very small contribution from the second stratum.
Therefore if the layers are abundant, the total plant NIR reflectance rate will be
higher, since at each stratum the radiation will be partially reflected from bottom
leaves to the upper ones, increasing the contribution of each single leaf. On the other
hand if the layers are few, foliage will prevalently transmit NIR radiation, which will
quickly reach the soil, and consequently the reflectance rate will be low. This effect
is central when instead of single isolated organism we study vegetation canopies, as
for example forest or corn field. As a matter of fact vegetation canopies include
different plants, which means different leaves shapes, orientations, sizes and distinct
soil coverages. The direct effect is a strong difference in NIR reflectance between a
single leaf, which reflects on average 50% of the original NIR wavelength radiation,
and a canopy, whose NIR reflectance rate is close to 35% of the original sunlight
wave. The reflection rate of RED wavelength of hitting radiation is quite the same
for single leaf, on average 10% of the original one, and for canopy, up to 5% of the
original one, cf. [eco14].
From the 60s the scientific community highlighted two important relations between
biomass and spectral measurements:

• a direct relation between NIR region and biomass, i.e. greater the biomass
greater the NIR reflected radiation measured and vice versa;

• an inverse relation between RED spectral region and biomass, i.e. greater the
biomass, lower the RED reflected visible spectrum measured and vice versa.

The relation between NIR and RED reflectance is central for the vegetal biomass
estimation. The aim of vegetation indexes is measuring biomass or vegetative vigour
on the base of digital brightness values. According to [eco15] and [eco16] the ideal
vegetation index should:

• maximize sensitivity to selected plant biophysical parameters;

• be preferably linear to simplify calibration and validation;

• normalize or describe also external noise effects, as Sun hitting angle, satellite
view angle and atmosphere interactions;

• normalize internal noise effects, as soil variations;

• normalize differences in senescent vegetation;

• be matched with measurable biophysical parameters. The most used to com-
pare remote sensed data are

– leaf area index, or LAI, which is the ration between the area of the upper
leaf surface of the considered vegetal organisms and the surface of a pixel.
It is a dimensionless value and it ranges from 0, for pure soil pixel, up to
6, typical of huge forests;
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– absorbed photosynthetically active radiation, or APAR, which expresses
the amount of solar energy that vegetation effectively absorb;

– vegetation fraction, or VF, which is the percentage of vegetation occupying
each pixel;

– net primary production, or NPP, measures the plants photosynthesis pro-
duction of a region.

During the last half century, ecologists proposed many vegetation indexes.

1.2.1 Chosen data form

We will focus only on the Normalized Difference Vegetation Index, or NDVI,
presented in 1974 by Rouse and his collaborators, cf. [eco17].

Definition 1.2.3. Given a region R, let RED,NIR ∈Mm×n(R) be respectively the
RED and the NIR raster band of R imagery. The normalized difference vegetation
index of region R is NDV I ∈Mm×n(R) such that

NDVIij =
NIRij −REDij

NIRij +REDij

for every i ∈ {1, . . . ,m} and for every j ∈ {1, . . . , n}, when it is defined.

This index has been widely studied, cf. [eco18; eco19] and we can now present
its advantages and disadvantages. The main benefit of using NDVI is monitoring the
seasonal and inter-annual changes in the plant activity. Moreover, its mathematical
form reduces many types of noise, as variations of Sun illumination, atmospheric
interactions and cloud disturbances. On the oher side, it is not linear and is usu-
ally highly correlated with LAI. Consequently it is stretch in favour of low-biomass
conditions and it is compressed for the high ones, as forested area. Lastly it is ex-
tremely sensitive to soil and more general background variations, cf. [eco20; eco21].
Anyway NDVI, shown in Figure 1.2 is still today widely used in ecological contexts,
which include the biodiversity generalised entropy estimation.
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Figure 1.2: Earth NDVI image of November 2018.

1.3 Biodiversity index

So far we have discussed remote sensing, focusing the vegetal world. In this
section we will explain how we can take advantage of plant remote sensed data to
estimate biodiversity.
Firstly we notice that ecologists distinguish three type of biodiversity: alpha, beta
and gamma biodiversity.
In 1972 reminding the studies of Lotka, Volterra, Gause, Elton and Grinnell, Whit-
taker highlighted that niche is the key concept to identify different species and con-
sequently to model exclusion or coexistence with others.

Definition 1.3.1. Niche is the position that a specie occupies in terms of resources
use, time of activity, vertical location, relation to horizontal pattern, manner of
population interaction with other species.Community is a system where populations
of niche-differentiated species interact.

Whittaker noticed that organisms occupying nearly niches with respect to the
resource gradient, which drives evolutionary processes, will evolve in divergent ways.
For example in some boreal forests, where the gradient is obviously sunlight, there
are from 5 up to 7 main plants with extremely different characteristics, as canopy,
smaller tree species, tall and low shrub species, tall and low herbs species and ground-
level moss. However in most of the cases evolutionary pressure leaded to a complete
fit of all the possible community niches. The direct consequence is a "packing" of
species along the gradient, [eco22]. Moreover Whittaker underlined that evolu-
tionary diversification on the ecosystem bottom level, for example plants divergent
evolution, is transmitted to the all other layers, through the food-chain. Well posed
this fundamental evolutionary concepts, we can define the three type of biodiversity
presented by [eco23] and [eco24].
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Definition 1.3.2. Alpha diversity is the species richness of an area. Beta diversity
is the extent of species replacement or biotic change along environmental gradients.
Gamma diversity is the overall diversity of an extensive area.

Since these definitions may seem quite abstract, we will provide an example.

Example 1.3.3. Let R be an extensive region, consisting of 3 specific habitats, as
fields, wood and forest areas. We assume to have 8 different species:

{A,B,C,D,E, F,G,H},

whose presence in the different zones is reported in the following table.

Specie A B C D E F G H
Field x x x x
Wood x x x
Forest x x x x x

Table 1.1: Species distribution in different areas of region R.

The alpha diversity for the field area has value 4, since there are 4 different
species, for the wood area is equal to 3 and for the forest one is 5. The beta diversity
for field and wood area is 5, since they differ for 5 species, for field and forest it is 7
and for the pair wood and forest it is equal to 4. Mathematically the beta diversity
is the cardinality of the set difference between the union and the intersection of the
area species sets. The gamma diversity of region R is obviously 8, i.e. the total
number of present species.

Henceforth we will focus on alpha diversity. Ecologists wish to measure alpha
diversity of a sample area estimating both the species richness and the species im-
portance. Counting the number of species is one of the simplest way to measure
alpha biodiversity of an area. However it does not give any estimate of the species
importance. Moreover if we choose a sample from the whole area, then the spe-
cific choice may affect the result. Therefore many various indexes were developed to
cross this line. In the second half of the 20th century Simpson proposed its index,
cf. [eco25].

Definition 1.3.4. Given a sample area with N species and defined pi the probability
of randomly drowning an individual of the i-th species from the area for every i ∈
{1, . . . , N}, the Simpson index is

IS =

N∑
i=1

p2i .

The relative abundance of the i-th species is pi for every i ∈ {1, . . . , N}.
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Each element of the summation is the probability of randomly drown two in-
dividuals of the same species from the chosen sample area. Notice that this index
expresses degree of dominance. As a matter of fact greater is the presence of a spe-
cies, greater will be the IS final value. However this highlights also a limit of the
Simpson index: if we assume the probabilities to be decreasingly ordered, the first
ones strongly affect it.
Following the idea of Simpson, other indexes were proposed over the years. We recall
two of the best known.

Definition 1.3.5. Given a sample area with N species and defined pi the relative
abundances for every i ∈ {1, . . . , N}, in decreasing order, the Berger-Parker index is

IBP = p1,

the Shannon-Wiener index is

ISW = −
N∑
i=1

pi log pi,

while the Rényi index is

IR = − log

N∑
i=1

p2i .

Notice that the Rényi index is the negative logarithm of the the Simpson index.
Moreover in 1961 the Hungarian mathematician Rényi proposed a parametric family
of indexes, cf. [eco26].

Definition 1.3.6. Given a sample area with N species and defined pi the relative
abundances i ∈ {1, . . . , N}, in decreasing order, the parametric Rényi index is

IR,α =
1

1− α
log

N∑
i=1

pαi ,

with α ∈ R+ \ {1}.

For different values of α, the Rényi parametric index has a different relation with
the previous one.

Remark 1.3.7. For α = 0, we get the logarithmic value of the number of species,
i.e. IR,0 = logS.
Notice that even if IR,α is not defined for α = 1, we can compute the limit

lim
α→1

1

1− α
log

N∑
i=1

pαi = −
N∑
i=1

pi log pi

applying the l’Hôpital rule.
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Ecological literature includes many applications and results of Rényi parametric
index family. For example [eco27] used this family properties to estimate diversity
of tropical forest communities in Sumatra. Besides there are applications of this
index also in the animal ecology field, as [eco28] and [eco29].

1.3.1 Indexes for remote sensed images

These indexes are usually developed in the information theory field, cf. [eco30].
The innovative idea of [eco31] was the application of information theory studies to
remote sensed images. Let u a pixel be our basic unit. Given a remote sensed image,
of radiometric resolution N ∈ N, for every u of this image we find two associated
information:

• s(u) the spatial component which expresses the position of u in the image;

• z(u) the property of u, which in our case is a value v ∈ {0, . . . , N − 1}.

Remark 1.3.8. If instead of an image we consider a raster A ∈ Mm×n(R), of
radiometric resolution N ∈ N, the pixels are the entries of A. So we associate to aij
entry of A

• the entry coordinates as spatial component, i.e. s(aij) = (i, j);

• the entry value as pixel property, i.e. z(aij) = aij, which will belongs to
{0, . . . , N − 1}

for every i ∈ {1, . . . ,m} and for every j ∈ {1, . . . , n}.

We assume that the species are the values between 0 and the radiometric resolution
of the image. Consequently the number of species is the radiometric resolution and
the relative abundance of the i-th specie is the number of times the i-th value is
present in the image. However use of Rényi parametric index presents some limits.
The next example will clarify it.

Example 1.3.9. Let R be a remote sensed image with 8 different radiometric values,
stored in the vector p ∈ R8. We show that for different structures of p, the Rényi
index remains the same. If p = [0, 0, 0, 1, 1, 0, 0, 0], the relative abundances are
p0 = 0.75 and p1 = 0.25. If p = [0, 0, 7, 0, 0, 0, 7, 0], the relative abundances are
still p0 = 0.75 and p7 = 0.25. In terms of diversity we notice that the lag between
values in the first vectors is lower than the one in the second one. However since this
difference is not seen, the Rényi index will be equal to

IR,α =
1

1− α
log(

1

4

α

+
3

4

α

).
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This obstacle is due to the approach used in the remote sensing: the elements
which describe different species are numerical values, not classes. Therefore we can
easily establish a measure of difference between them.
Another limit of Rényi and relative abundance based indexes is the difficulty in
understanding if diversity comes either from the number of species or from their
"distribution", cf. [eco32]. Therefore in ecology the aim of using Rényi parametric
index is creating a diversity profile, which highlights a relation between the parameter
value and the sensitivity to rare or frequent values.
To overcome the limit described in Example 1.3.9, in [eco33] an index new to
spectral images was presented.

Definition 1.3.10. Given a spectral image of a sample area, let N be the image
radiometric resolution and let pi be the relative abundances of the i-th value for
every i ∈ {1, . . . , N}. Fixed a distance function d, we build up a pairwise spectral
difference matrix D ∈MN (R) such that

Dij = d(i, j)

for every i, j ∈ {1, . . . , N}. The Rao’s Q index is

IRQ =
N∑
j=1

N∑
i=1

pipjDij .

Notice that Rao’s Q index takes into account not only relative abundances of val-
ues but also their mutual distances. Many functional ecology applications of Rao’s
Q index provided significant results, cf. [eco34; eco35; eco36]. Although its the-
oretical strength, this index is still under investigation in remote sensing diversity
estimation.

To conclude this section, we want to briefly describe the method of vegetal biod-
iversity computation based on remote sensed images. Given a raster, ecologists
usually split it into small chunks, called windows. To estimate the value of the pre-
viously presented indexes, we firstly select l an odd number, which will corresponds
to the window side. With this choice, we have a central entry in the window, i.e. the
( l+1

2 , l+1
2 ) entry, which will be placed as a mask, in position (1, 1) over our raster.

The index is therefore computed only with the values which the window covers. No-
tice that with this choice we will have some missing values, which will not contribute
in the index computation. The obtained index value is stored in position (1, 1) in
the output raster. The following step is moving the window so that its central entry
is over the entry (1, 2) of the raster. The index value computed is stored in the
corresponding position of the output raster, i.e. in (1, 2). We proceed in this way
until the last entry of output raster is filled.
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Figure 1.3: The moving window technique for biodiversity index computation,
cf. [eco31].

This technique, visually presented in Figure 1.3, is extremely popular in ecology
since it is quite simple, robust and powerful to simulate biological boundary, cf.
[eco37; eco38]. Moreover notice that this technique of computing index has a
suitable algorithmic structure.

Algorithm 1 Index computation with moving window
Input: a raster R ∈Mm×n(R)
Input: an index computation function f
Input: an odd number l
Output: the raster with the index values OR
m ∈Ml×l(R) is the moving window;
for i = 1, 2, . . . ,m do
for j = 1, 2, . . . , n do

we assign to m the values of R covered by a l side square mask at the step
(i, j);
f computes the index value with values covered by the moving window m;
ORij ← f(m);

end
end

1.4 The problem

Technological improvements in remote sensors lead to a growth, in the number
and in the size of the data. For example to store a band of the entire Earth’s surface
from the MODIS sensor with a low spectral resolution, 5600 m, we need around
99 MB. Therefore for rasters with higher spectral, spatial or radiometric resolutions
the memory request increases significantly. One may point out that 99 MB are not
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much, if compared with the features of modern machines. However if we have to
analyse thousand of them the necessary memory increase quickly. Moreover we
remark that in order to perform any index computation over these imageries, we
have to load them into the computer RAM, which usually has lower capacity and is
occupied also by the system application and by our computing script.
Since the advent of big data, which include multispectral and hyperspectral images,
improving our storage and analytical techniques became fundamental. Obviously
mathematicians are facing this challenge together with computer scientists, physics
and engineers. The usual structure for storing multispectral images are tensors.
Mathematicians proved the existence of an optimal technique, called Singular Values
Decomposition, or SVD, for matrices approximation. One application of SVD is
image compression. Since we need to store our data in tensors, the generalisation
of matrices, we will present High Order Singular Value Decomposition, HOSVD, a
generalisation to tensors of SVD. Even if only for some special case HOSVD provides
optimal results, we are able to present an estimate of the tensor approximation
errors. Indeed the core of the present thesis will be the HOSVD technique, its
modern versions and the error made using them. In the last chapter we will apply
some possible HOSVD implementations to tensors, in which we stored RED and
NIR bands. Next from the compressed tensors we get a NDVI rasters and over
them we compute biodiversity index. So we will be able to compare our biodiversity
estimations from compressed data with the estimations over original data.
As far as we know, this is a first attempt to estimate biodiversity with the presented
indexes from HOSVD compressed data. Moreover the obtained results are extremely
promising, letting us support its efficiency in ecological framework.
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Chapter 2

From SVD to HOSVD

In this second chapter we will introduce the main algebraic and numerical results
related to singular value decomposition and to high order singular value decomposi-
tion.

2.1 Singular value decomposition

Before stating any theorem, we assume that K will denote henceforth an algeb-
raical closed field with characteristic 0.
One of the most used results of linear algebra in pure and applied mathematics is
the spectral theorem.

Theorem 2.1.1 (Spectral theorem).
Let V be a vector space over the field K of finite dimension n ∈ N. If T : V 7→ V is
a linear symmetric operator, then T is a diagonalisable.

Proof. Cf. [mate1].

A special case of this theorem is the following.

Theorem 2.1.2 (Real spectral theorem).
Given a symmetric matrix A ∈ Mn(R), then A is orthogonally diagonalisable, i.e.
there exist U ∈ O(n) and D ∈Mn(R) diagonal such that A = UTDU .

Proof. Cf. [mate1]

A particular case of the previous theorem is summed up in the principal axis
theorem.

Theorem 2.1.3 (Principal axis theorem).
Given a matrix A ∈Mn(R), the following statements are equivalent:

1. A is symmetric, i.e. AT = A;

19



20 From SVD to HOSVD

2. A is orthogonally diagonalisable, i.e. there exist U ∈ O(n) and D ∈ Mn(R)
diagonal such that A = UTDU ;

3. there exist an orthonormal basis of Rn of eigenvectors of A , i.e. there exists
B = {v1, . . . , vn} ⊆ Rn such that for every i, j ∈ {1, . . . , n}:

• vi · vj = δij;

• Avi = λivi, with λi ∈ R.

Proof. Cf. [mate2].

Example 2.1.4. Given the matrix A ∈M2(R) defined as A =

[
6 2
2 3

]
, it is possible

to apply the principal axis theorem, since A is symmetric. After some computations,
we have that the eigenvalues are λ1 = 2 and λ2 = 7, while the relative eigenvectors
are

v =
1√
5

[
1
−2

]
and

1√
5

[
2
1

]
.

If v and w are set column-wise to create the matrix U , we check that:

UTDU =
1

5

[
1 −2
2 1

] [
2 0
0 7

] [
1 2
−2 1

]
=

1

5

[
30 10
10 15

]
=

[
6 2
2 3

]
= A.

Everything in this case works fine, thanks to the main concept of symmetry.
However in applications usually matrices are not symmetric neither square. Therefore
it is necessary to introduce other more general results.
We prove an easy proposition for real rectangular matrices.

Proposition 2.1.5. Given A ∈Mm×n(R), then ATA and AAT are both symmetric
matrices.

Proof. Fixed B = ATA, then BT = (ATA)T = (A)T (AT )T = ATA = B, thanks
to the transpose operation properties. Similarly, fixed C = AAT , we get CT =
(AAT )T = (AT )T (A)T = AAT = C, i.e. the thesis.

Before working with this property, we remind the definition of norm.

Definition 2.1.6. Given V a vector space with a scalar product, the norm of a
vector w is ||w||=

√
w · w for every w ∈ V.

Thanks to the previous result, we can apply the principal axis theorem to the mat-
rix ATA for every A ∈ Mm×n(R). Moreover using the third statement of Theorem
2.1.3 there exist an orthonormal basis B = {v1, . . . , vn} such that (ATA)vi = λivi
with λi ∈ R for every i ∈ {1, . . . , n}. So using associativity of the scalar product and
applying the orthogonal eigenvectors definition we get

Avi ·Avj = (Avi)
T (Avj) = vTi (ATAvj) = vTi (λjvj) = λjvi · vj = λjδij . (2.1)
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for every i, j ∈ {1, . . . , n}. Fixed i = j for every i ∈ {1, . . . , n}, Equation 2.1 leads
to an important characteristic of these eigenvalues:

λi = λivi · vi = Avi ·Avi = ||Avi||2

for every i ∈ {1, . . . , n}. Therefore for every i ∈ {1, . . . , n} the eigenvalue λi is not
negative. Consequently the following definition is well posed.

Definition 2.1.7. Let A ∈Mm×n(R) be a matrix and let λi be eigenvalue of ATA.
A left singular value of A is σi =

√
λi for every i ∈ {1, . . . , n}.

Obviously one can define the right singular values of a matrix A by taking the
square roots of the eigenvalues of AAT . In the present discussion we will develop the
theory with the left eigenvalues, which for simplicity we will call singular values.
Given a matrix, we would to know the number of singular values.

Lemma 2.1.8. Given a matrix A ∈ Mm×n(R) of rank r, fixed B = {v1, . . . , vn} an
orthogonal basis of eigenvectors of ATA, then B′ = {Av1, . . . , Avr} is an orthogonal
basis of Im(A).

Proof. Obviously the image through A of B is a subset of Im(A). By the definition
of rank, it follows that Im(A) has dimension r. If we define h the cardinality of the
maximal independent set contained in A(B), then h has to be smaller of equal to r.
Without loss of generality we assume that the maximal independent set is

B′ = {Av1, . . . , Avh}.

Let w ∈ Rn be a vector with respect the basis B:

w =

n∑
i=1

ωivi with ωi ∈ R for every i ∈ {1, . . . , n}.

The image of w through A is:

Aw = A(

n∑
i=1

ωivi) =

n∑
i=1

ωiAvi =

h∑
i=1

ω̃iAvi (2.2)

with ω̃i ∈ R for every i ∈ {1, . . . , h} by the linear property of A. Equation 2.2
shows that every z ∈ Im(A) z is a linear combination of elements of B′ , i.e. B′ is a
basis of Im(A). Therefore h has to be equal to r. It can be observed that for every
i, j ∈ {1, . . . , r} such that i 6= j:

(Avi) · (Avj)(Avi)T (Avj) = vTi (ATAvj) = vTi (λjvj) = λjvi · vj = 0,

which means that B is an orthogonal basis of Im(A).

Corollary 2.1.9. Given a matrix A ∈ Mm×n(R) of rank r, then A has r singular
values not necessary distinct.
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Proof. The singular values are defined as:

σi =
√
λi = ||Avi||

for vi eigenvectors of ATA for every i ∈ {1, . . . , n}. By Theorem 2.1.3, it follows
that B = {v1, . . . , vn} is an orthonormal basis of Rn. Without loss of generality we
assume that the first r vectors have linear independent image through A. So applying
the main lemma, the set B′ = {Av1, . . . , Avr} is a basis of Im(A). Therefore we get
that A has r singular values by definition.

All along the thesis we will denote the i-th singular value of a matrix A by
σi(A). In order to state and to prove one of the central result in this discussion, it is
convenient to assume that henceforth the singular values will be decreasing ordered.

Lemma 2.1.10. Let A,B ∈ Mm×n(R) and q = min{m,n}, we get the following
equation:

σi+j−1(A+B) ≤ σi(A) + σj(B)

for every i, j ∈ {1, . . . , q} such that i+ j − 1 ≤ q.

Proof. Cf. [mate3]

Theorem 2.1.11. Singular value decomposition
Given A ∈ Mm×n(K) of rank r, let σi(A) be the singular values for every i ∈
{1, . . . , r}. Then there exist:

• two orthogonal matrices U ∈ O(m) and V ∈ O(n);

• a matrix Σ ∈Mm×n(R) such that Σii = σi for every i ∈ {1, . . . , r} and Σij = 0
otherwise;

such that A = UΣV T .

Proof. Let B2 = {v1 . . . , vn} be a basis of eigenvectors of ATA, by Lemma 2.1.8
we can assume, without loss of generality, that the set B̃ = {Av1, . . . , Avr} is an
orthogonal basis of Im(A). For every i ∈ {1, . . . , r} we define the vector:

ui =
Avi
σi
∈ Rm. (2.3)

Consequently the set B̃1 = {u1, . . . , ur} is a set of independent orthogonal vectors,
which can be completed with m − r vectors of Rm. So the completed set B1 =
{u1, . . . , um} is an orthogonal basis of Rm.
Sorting the vectors of B1 and B2 column-wise, we define two matrices U and V . By
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construction U ∈ O(m) and V ∈ O(n). The matrix Σ of Theorem 2.1.11 turns out
to be

Σ =



σ1 0 0 0 0 . . . 0
0 σ2 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 0 σr 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0


.

Showing that A = UΣV T is equivalent to show that AV = UΣ, because V T = V −1.
Computing the j-th column of UΣ for j ∈ {1, . . . , r}, we have:

(UΣ)·,j = U·,·Σ·,j = U

 0
σj
0

 = σjuj , (2.4)

while if j ∈ {r + 1, . . . ,m}, then

(UΣ)·,j = U·,·Σ·,j = U

0
...
0

 = 0. (2.5)

Then computing the j-th column of AV for j ∈ {1, . . . , r}, we get:

(AV )·,j = A·,·V·,j = Avj = σjuj (2.6)

by Equation 2.3. On the other side, if j ∈ {r + 1, . . . , n}, then

(AV )·,j = A·,·V·,j = Avj = 0

because of the rank of A.

Before stating the most important consequence of the singular value decomposi-
tion theorem, we provide a useful example.

Example 2.1.12. Let A ∈M3×2(R) be:

A =

3 2
2 3
2 −2

 ,
whose rank is 2. We define the matrix B = ATA, which is

B = ATA =

[
3 2 2
2 3 −2

]3 2
2 3
2 −2

 =

[
17 8
8 17

]
.
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The characteristic polynomial of B in λ is:

p(λ) = λ2 − 34λ+ 225 = (λ− 25)(λ− 9).

Consequently the singular values of A are σ1 = 5, σ2 = 3. Following the proof
steps, it is necessary now to compute the orthogonal eigenvectors of B, which are

v1 =

[
v
−v

]
and v2 =

[
w
w

]
for every v, w ∈ R. Fixed v = w = 1√

2
, we get v1 =

1√
2

[
1
1

]
and v2 = 1√

2

[
1
−1

]
. So the matrix V is:

V =
1√
2

[
1 1
1 −1

]
.

In order to get the matrix U , we compute two mutually orthogonal vectors

u1 =
Av1
σ1

=
1

5
√

2

3 2
2 3
2 −2

[1
1

]
=

1√
2

1
1
0


and

u2 =
Av2
σ2

=
1

3
√

2

3 2
2 3
2 −2

[ 1
−1

]
=

1

3
√

2

 1
−1
4

 .
To complete the matrix U it is necessary to determine a third vector u3 such that
u1 · u3 = u2 · u3 = 0 and u3 · u3 = 1, as u1 · u1 = u2 · u2 = 1. The first two conditions

are equivalent to state that u3 =

ab
c

 with a, b, c ∈ R and b = −a and 2c = −a.

Therefore fixed a = 2, the vector u3 =

 2
−2
−1

 normalised becomes u3 = 1
3

 2
−2
−1

.
Consequently the matrix U is

U =


1√
2

1√
18

2
3

1√
2

−1√
18

−2
3

0 4√
18

−1
3

 .
In conclusion we compute:

UΣV T =
1

6

3 1 2
√

2

3 −1 −2
√

2

0 4 −
√

2

5 0
0 3
0 0

[1 1
1 −1

]
=

1

6

18 12
12 18
12 −12

 = A.

Remark 2.1.13. The previous example shows that the third vector u3 that we added
does not contribute to the reconstruction of the original matrix A. This evidently
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holds in general, i.e. since from the (r+1)-th column and row of Σ all its entries are
zeros, the last columns of U and V from the (r + 1)-th do not contribute to the final
result. As a matter of fact sometimes it is used a second formulation of the singular
value decomposition theorem.

Definition 2.1.14. Given a matrix A ∈Mm×n(R) of rank r, its SVD is UΣV T , with
U ∈ O(m), Σ ∈ Mm×n(R) and V ∈ O(n). Let Ũ ∈ Mm×r(R) and Ṽ ∈ Mn×r(R) be
such that Ũ·,j = U·,j and Ṽ·,j = V·,j for every j ∈ {1, . . . , r}. Lastly let Σ̃ ∈Mr×r(R)
be such that Σ̃i,j = Σi,j for every i, j ∈ {1, . . . , r}. The thin SVD of A is Ũ Σ̃Ṽ T .

One of the most significant consequence of Theorem 2.1.11 is the following ap-
proximation result, which will be proved using the Frobenius norm.

Definition 2.1.15. Given a matrix A ∈Mm×n(K), the Frobenius norm of the matrix
A is: ∥∥∥A∥∥∥

F
=

√√√√ m∑
i=1

n∑
j=1

|a|2ij

Example 2.1.16. Given the matrix A ∈ M3×2 of Example 2.1.12, its Frobenius
norm is: ∥∥∥A∥∥∥2

F
= 4(2)2 + 2(3)2 = 34.

Notice that tr(ATA) = 2(17) =
∥∥∥A∥∥∥2

F
.

Remark 2.1.17. We observe that given A ∈Mm×n(K), then∥∥∥A∥∥∥2
F

= tr(AHA).

Henceforth all along the thesis to shorten the notation we will omit to specify
the norm, assuming to use the Frobenius’ one.

Lemma 2.1.18. Given A ∈ Mm×n(R) of rank r, if σi(A) is the i-th singular value
of A for every i ∈ {1, . . . , r}, then

∥∥∥A∥∥∥ =

√√√√ r∑
i=1

σ2i (A).

Proof. We apply Theorem 2.1.11 to the matrix A, i.e. with U ∈ O(m), V ∈ O(n)
and Σ ∈ Mm×n(R) such that the first r diagonal elements of Σ are the decreasingly
ordered singular values of A and all the others are zero. Consequently by Remark
2.1.17 it follows ∥∥∥A∥∥∥2 =

∥∥∥UΣV T
∥∥∥2 = tr[(UΣV T )T (UΣV T )]. (2.7)
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By the orthogonality of U , we obtain from the previous equation that:∥∥∥A∥∥∥2 = tr[(UΣV T )T (UΣV T )] = tr[V ΣUTUΣV T ] = tr(V ΣTΣV T ). (2.8)

Reminding that Σ is a diagonal matrix, as seen in Remark 2.1.17, Equation 2.8
becomes ∥∥∥A∥∥∥2 = tr(V ΣTΣV T ) = tr(V Σ2V T ). (2.9)

In conclusion thanks to trace commutativity property with respect to the product,
it follows from 2.9:∥∥∥A∥∥∥2 = tr(V Σ2V T ) = tr(Σ2V V T ) = tr(Σ2) =

r∑
i=1

σ2i (A),

since the orthogonality of V and the diagonal structure of Σ.

The previous Lemma will be crucial in the proof of the next result, central for
our discussion.

Theorem 2.1.19 (Schmidt, Mirsky, Eckhart, Young theorem).
Given a matrix A ∈ Mm×n(R) of rank r, let Σ ∈ Mm×n, U ∈ O(m) and V ∈ O(m)
be the matrices of the singular value decomposition as in Theorem 2.1.11. For every
i ∈ {1, . . . , r} we define the matrix S(i) ∈Mm×n(R) such that its (i, i) entry is the i-
th singular value and the others entries are zero. Then the best rank 1 approximation
of A is given by the matrix US(1)V T , i.e.∥∥∥A− US(1)V T

∥∥∥ ≤∥∥∥A−X∥∥∥ for every X ∈Mm×n(R) of rank 1.

Proof. Firstly we compute
∥∥∥A− US(1)V T

∥∥∥2, reminding that by Theorem 2.1.11 A =

UΣV T , then∥∥∥A− US(1)V T
∥∥∥2 =

∥∥∥UΣV T − US(1)V T
∥∥∥2 =

∥∥∥U(Σ− S(1))V T
∥∥∥2 , (2.10)

by the distributive property of the product with respect to the sum. Setting the
matrix B = Σ− S(1) and recalling Remark 2.1.17, we get∥∥∥A− US(1)V T

∥∥∥2 =
∥∥∥UBV T

∥∥∥2 = tr[(UBV T )T (UBV T )] = tr(V BTBV T ). (2.11)

Applying the trace commutativity property with respect to the product and the
orthogonality of V , Equation 2.11 becomes:∥∥∥A− US(1)V T

∥∥∥2 = tr(V BTBV T ) = tr(V V TBTB). (2.12)
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But B is a diagonal matrix, so from the previous equation we have:∥∥∥A− US(1)V T
∥∥∥2 = tr(B2) =

r∑
i=2

σ2i . (2.13)

It is now convenient to distinguish two cases. Firstly if r = 1, then we have the

thesis. In fact
∥∥∥A− US(1)V T

∥∥∥2 = 0 by the previous equation.
In the second case we assume that r > 1. For every X ∈ Mm×n(R) of rank 1,
we define the matrix B′ = A − X and B′′ = X. Applying Lemma 2.1.10 with
i ∈ {1, . . . , r − 1} and j = 2, because obviously i + 1 = i + j − 1 ≤ r ≤ q, with
q = min{m,n}, it follows that

σi+1(B
′ +B′′) ≤ σi(B′) + σ2(B

′′) (2.14)

which is equivalent to

σi+1(A) ≤ σi(A−X) + σ2(X). (2.15)

But rank(X) = 1 implies that X has only one singular value, as stated in Corollary
2.1.9, so σ2(X) = 0. Applying the 2.15 inequality to Equation 2.13 and setting
k = i+ 1 for every i ∈ {1, . . . , r − 1}, we obtain:

∥∥∥A− US(1)V T
∥∥∥2 =

r∑
k=2

σ2k =

r−1∑
i=1

σ2i+1(A) ≤
r−1∑
i=1

σ2i (A−X). (2.16)

Reminding Lemma 2.1.18 and the positivity of square real elements, from 2.16 we
get: ∥∥∥A− US(1)V T

∥∥∥2 =

r−1∑
i=1

σ2i (A−X) ≤
r∑
i=1

σ2i (A−X) =
∥∥∥A−X∥∥∥2 . (2.17)

Corollary 2.1.20. Under the hypothesis of Theorem 2.1.19, the matrix
∑k

i=1 US
(i)V T

is the best rank k approximation of A for every k ∈ {1, . . . , r}, i.e.

∥∥∥A− k∑
i=1

US(i)V T
∥∥∥
F

≤
∥∥∥A−X∥∥∥

F
for every X ∈Mm×n(R) of rank k.

Proof. It is convenient to distinguish two cases. Firstly if k = 1, then the thesis
follows from Theorem 2.1.19.
Otherwise set k ∈ {2, . . . , r}, then we have∥∥∥∥∥A−

k∑
i=1

US(i)V T

∥∥∥∥∥
2

=
r∑

h=k+1

σ2h, (2.18)
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thanks to the structure of S(i) for every i ∈ {1, . . . , r}, the orthogonality of U and V
and the trace properties. Fixed X ∈Mm×n(R) of rank k and h ∈ {1, . . . , r − 1}, we
apply Lemma 2.1.10 to the matrices B′ = A−X and B′′ = X with i ∈ {1, . . . , r−k}
and j = k + 1, which provides i+ j − 1 = i+ k ≤ r ≤ q where q ∈ min{m,n} and

σi+k(A) = σi+k(B
′ +B′′) ≤ σi(B′) + σk+1(B

′′) = σi(A−X) + σk+1(X). (2.19)

We observe that X has rank k and consequently σk+1(X) = 0, as stated in 2.1.9.
Using Inequality 2.19 in Equation 2.18 and setting h = k+ i for every i ∈ {1, . . . , r−
k}, we have:

∥∥∥∥∥A−
k∑
i=1

US(i)V T

∥∥∥∥∥
2

=

r∑
h=k+1

σ2h =

r−k∑
i=1

σ2i+k(A) ≤
r−k∑
i=1

σ2i (A−X). (2.20)

Recalling Lemma 2.1.18 and the positivity of square real elements, Equation 2.20
becomes:

∥∥∥∥∥A−
k∑
i=1

US(i)V T

∥∥∥∥∥
2

≤
r−k∑
i=1

σ2i (A−X) ≤
r∑
i=1

σ2i (A−X) =
∥∥∥A−X∥∥∥2 . (2.21)

Remark 2.1.21. Notice that Theorem 2.1.19 holds also with the spectral norm and
more in general for any norm O(m× n) invariant, cf. [mate4]

A possible application of Schmidt, Mirsky, Eckhart, Young theorem is provided
by images. As a matter of fact each image of size m× n in grey scale can be stored
into a machine as a matrix of mn real values. Consequently Theorem 2.1.19 leads
to an approximation of the image, but also to a reduction of the necessary storage
memory.
We now present an example of grey image approximation, implemented in python.

Example 2.1.22. Let’s take a grey photo, shown at the original quality in Figure
2.1.
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Figure 2.1: Cremona cathedral, from [mate5].

We need to import and convert a grey image into a matrix. The Python libraries
we choose are PIL, [m1], for image importation, and NumPy, [res3] for image-matrix
conversion and SVD computation. To perform singular value decomposition we
use NumPy command svd from linearalgebra module. The code for importing,
converting and decomposing is the following.

#### algorithm implementation
import sys
import numpy as np
from numpy import linalg as la
#### image manegment
import PIL
from PIL import Image
#### time evaluation
import time

#### loading image
inNAME = "Duomo.JPG"
img = Image.open("Duomo.JPG")
#### converting image in matrix
imgmat = np.array(list(img.getdata(band=0)), np.float64)
dim = imgmat.shape
sizeOR = imgmat.nbytes
#### decomposing la.svd
start_time = time.monotonic()
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ImDec = la.svd(imgmat)
end_time = time.monotonic()

In the variable dim we store matrix dimension, (4608, 3456), while in sizeOR the
memory necessary for storing the matrices. Notice that we add also library time
to estimate the time necessary to compute SVD. It takes approximately 45 s to
compute SVD of the matrix imgmat. Next we fix 4 target rank, we reconvert each
approximations into an image, presented in Figure 2.2, with the following code.

size = dict()
U = ImDec[0]
sigma = ImDec[1]
V = ImDec[2]
Rank = [10,50,100,1000]
for r in Rank:

size[str(r)]=((U[:,
:r]).nbytes)+(np.diag(sigma[:r]).nbytes)+((V[:, :r]).nbytes)↪→

rec = (U[:, :r]) @ np.diag(sigma[:r]) @ (V[:r, :])
outNAME = str(r) + inNAME
out = Image.fromarray((rec))
out = out.convert("L")
out.save(outNAME)

For each approximation, we have calculated and stored in dictionary size how much
memory is used to store orthogonal matrices of thin SVD and the diagonal one.
Lastly in the following table we list the ratios between values of sizeOR and size
for each rank, which express the rate of compression of the image.

Rank Rate of compression

10 0.0051

50 0.0255

100 0.2689

1000 0.5692

Table 2.1: Rate of compression.

Notice that with 2.5% of the original image information, we can build up a photo
where the most significant elements are easily recognisable, as the brick tower clock,
the man, the tables and the bike. When we zoom to the gable inscription in rank
1000 approximation, we can easily read it. Moreover it is astonishing that at a first
glance we can not say if the detail of Figure 2.2e or of Figure 2.2f comes from the
original photo.

However it happens that coloured images, called RGB, are composed by three
overlapping layers: red, green and blue. In this case to propose a similar compression
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(a) Rank 10 compression (b) Rank 50 compression

(c) Rank 100 compression (d) Rank 1000 compression

(e) Calbe detail from orginal photo (f) Calbe detail from rank 1000 compression

Figure 2.2: Approximation of Cremona cathedral photo.
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strategy we have to change the mathematical structure used, matrices, and introduce
tensors.

2.2 Tensors

Firstly we present a theorem which will let us define tensor spaces.

Theorem 2.2.1. Given A a commutative ring, let M and N be two A-modules.
Then there exists a pair (T, g), where T is an A-module and g : M × N 7→ T a
A-bilinear map such that:

• for every A-module P and for every A-bilinear map f : M × N 7→ P there
exists a unique A-linear map f ′ : T 7→P such that f = f ′ ◦ g:

• if (T, g) and (T ′, g′) are two pairs with the previous property, then there exists
a unique isomorphism h : T 7→T ′ such that h ◦ g = g′.

Proof. Cf. [mate6].

Corollary 2.2.2. Given A a commutative ring, let M1, . . . ,Mn be two A-modules.
Then there exists a pair (T, g), where T is an A-module and g : M1×M2×. . .×Mn 7→
T a A-multilinear map such that:

• for every A-module P and for every A-multilinear map f : M1 ×M2 × . . . ×
Mn 7→ P there exists a unique A-homomorphism f ′ : T 7→ P such that f =
f ′ ◦ g:

• if (T, g) and (T ′, g′) are two pairs with the previous property, then there exists
a unique isomorphism h : T 7→T ′ such that h ◦ g = g′.

Proof. Cf. [mate6].

Definition 2.2.3. Given n ∈ N, A a commutative ring and A-modules M1, . . . ,Mn,
the tensor product of M1, . . . ,Mn is the pair (T, g) with the properties stated in
Theorem 2.2.1. We will denote it by M1 ⊗A M2 ⊗A . . .⊗A Mn.
The map g : M1×M2× . . .×Mn 7→M1⊗A M2⊗A . . .⊗A Mn is such that for every
(m1,m2, . . . ,mn) ∈M1 ×M × . . .×Mn:

g(m1,m2, . . . ,mn) = m1 ⊗A m2 ⊗A . . .⊗A mn.

When there is no ambiguity about the commutative ring, we will omit it. Moreover
tensor product symbol will replace the map g.
Since vector spaces are modules, this definition of tensor product holds also for them.
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Remark 2.2.4. Given K a field and fixed d, n1, . . . , nd ∈ N, then we get the tensor
product Kn1 ⊗ . . . ⊗ Knd. By Theorem 2.2.1 it is a module over the field K. Con-
sequently the tensor product of the fields Kni for i ∈ {1, . . . , d} is a vector space.
If Bnj = {ej1, . . . , e

j
nj} is a basis of Knj for every j ∈ {1, . . . , d}, then the set

B = {e1i1⊗e
2
i2⊗. . .⊗e

d
id
| ejij ∈ Bnj for every ij ∈ {1, . . . , nj} for every j ∈ {1, . . . , d}}

is a basis for Kn1 ⊗ . . .⊗Knd.

Thanks to this remark, we can define the canonical tensor basis.

Definition 2.2.5. Let K be a field and fixed d, n1, . . . , nd ∈ N, we choose the
canonical basis of Knj , i.e. Bnj = {ej1, . . . , e

j
nj} for every j ∈ {1, . . . , d}. Then

the set

B = {e1i1⊗e
2
i2⊗. . .⊗e

d
id
| ejij ∈ Bnj for every ij ∈ {1, . . . , nj} for every j ∈ {1, . . . , d}}

is the canonical tensor basis of Kn1 ⊗ . . .⊗Knd .

Definition 2.2.6. Given K be a field and fixed d, n1, . . . , nd ∈ N, the order of
the tensor A is d and the size of tensor A is the tuple (n1, . . . , nd) for every A ∈
Kn1 ⊗ . . .⊗Knd .

Now we can give a more concrete definition of tensor. Fixed the canonical tensor
basis, we can associate to A a d-array

A = [ai1,i2,...,id ]n1,n2,...,nd
i1,i2,...,id=1

uniquely determined with respect the the elements of B such that:

A =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

ai1,i2,...,id(e1i1 ⊗ e
2
i2 ⊗ . . .⊗ e

d
id

)

with ai1,i2,...,id ∈ K for every ij ∈ {1, . . . , nj} for every j ∈ {1, . . . , d}. However this
representation, which is related to the choice of the tensor basis, is not convenient
for stating and proving theoretical results. Therefore we will not be use it frequently
throughout this discussion. Obviously on tensor space sum and multiplication by
scalar factors are well defined. However we want to highlight an operation, frequently
used in the decomposition techniques, of multiplication between matrices and tensor.

Definition 2.2.7. Given a field K and d,m, n1, . . . , nd ∈ N, fixed j ∈ {1, . . . , d} and
a basis for Kni for every i ∈ {1, . . . , d}, the matrix tensor product operation is

·j : Mm×nj (K)×Kn1 ⊗ . . .⊗Knj ⊗ . . .⊗Knd 7→ Kn1 ⊗ . . .⊗Km ⊗ . . .⊗Knd
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such that for every B ∈ Mm×nj (K) and for every tensor A ∈ Kn1 ⊗ . . . ⊗ Knd

represented with respect to the canonical basis as

A =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

ai1,i2,...,id(e1i1 ⊗ e
2
i2 ⊗ . . .⊗ e

d
id

),

then

B ·j A =

n1∑
i1=1

. . .

nj∑
ij=1

. . .

nd∑
id=1

ai1,...,ij ,...,id(e1i1 ⊗ . . .⊗Be
j
ij
⊗ . . .⊗ edid).

It is trivial to extend this operation to a tuple of matrices thanks to multilinearity:

·(1,...,d) : (Mm1×n1(K)× . . .×Mmd×nd(K))× (Kn1 ⊗ . . .⊗Knd) 7→ Km1 ⊗ . . .⊗Kmd

such that

(B1, . . . , Bd)·(1,...,k)A =

n1∑
i1=1

. . .

nj∑
ij=1

. . .

nd∑
id=1

ai1,...,ij ,...,id(B1e
1
i1⊗. . .⊗Bje

j
ij
⊗. . .⊗Bdedid)

for every Bj ∈Mmj×nj (K) and for every A ∈ Kn1⊗. . .⊗Knd for every j ∈ {1, . . . , d}.

Besides henceforth the matrix multiplication symbol will be omitted, when there
is no ambiguity.

Example 2.2.8. Given d ∈ N and n1, . . . , nd ∈ N, we consider the real tensor
product vector space Kn1 ⊗Kn2 ⊗ . . .⊗Knd .
If d = 2, then Kn1 ⊗Kn2 is the vector space of real matrices of size (n1, n2). If one
wants to show this, firstly perform the existence of a bilinear map g : Kn1 ×Kn2 7→
Mn1×n2(K). The map g is such that for every (v, w) ∈ Kn1 ×Kn2 , its image through
g is:

g(v, w) = vwH =


v1
v2
...
vn1

 [w1 w2 . . . wn2

]
=


v1w1 v1w2 . . . v1wn2

v2w1 v2w2 . . . v2wn2

...
...

. . .
...

vn1w1 vn1w2 . . . vn1wn2

 .
This product is also called outer product. One can observe that the map g is well
defined. Moreover we check the bilinearity with respect to the sum in Knj for j ∈
{1, 2} and to the multiplication by scalars. For every v, x ∈ Kn1 , w, y ∈ Kn2 and
α, β ∈ K, then

g(α(v + x), β(w + y)) = [α(v + x)][β(w + y)]H = αβ[(v + x)(wH + yH)] =

= αβ(vwH + vyH + xwH + xyH) =

= αβ[g(v, w) + g(v, y) + g(x,w) + g(x, y)].
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To show that the pair (Mn1×n2(K), g) is isomorphic to Kn1 ⊗Kn2 , we fix a basis for
Knj for every j ∈ {1, 2}. So, without loss of generality, we choose Bn2 = {e1, . . . , en1}
and Bn2 = {f1, . . . , fn2} the canonical basis of Kn1 and Kn2 respectively. Next we
underline that for every A ∈ Mn1×n2(K) such that the (i, j) entry is aij ∈ K for
every i ∈ {1, . . . , n1} and for every j ∈ {1, . . . , nj}, then

A =

n1∑
i=1

n2∑
j=1

aijE
(ij)

where E(ij) ∈ Mn1×n2(K) such that the matrix E(ij) has entry (i, j) equal to 1 and
all the others are zeros for every i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. So the set

B = {E(ij) | for every i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}}

is a basis for Mn1×n2(K). We highlight that for every ei ∈ Bn1 , fj ∈ Bn2 , and for
every i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2} the matrix E(ij) = eif

H
j . Then for every P

vector space over K and for every real bilinear map l : Kn1 ×Kn2 7→P there exists
a the map l′ : Mn1×n2(K) 7→P such that for every E(ij) ∈ B, its image is

l′(E(ij)) = l(ei, fj)

for every ei ∈ Bn1 and fj ∈ Bn2 , i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2} . We remark
that l′ is a linear map. As a matter of fact for every i, h ∈ {1, . . . , n1}, for every
j, d ∈ {1, . . . , n2} and for every α ∈ K, then

• αl′(E(ij)) = αl(ei, fj) = l(αei, fj) = l′(αE(ij));

• αl′(E(ij)) = αl(ei, fj) = l(ei, αfj) = l′(αE(ij));

• l′(E(ij)) + E(ik)) = l(ei, fj + fk) = l(ei, fj) + l(ei, fk) = l′(E(ij)) + l′(E(ik));

• l′(E(ij)) + E(hj)) = l(ei + eh, fj) = l(ei, fj) + l(eh, fj) = l′(E(ij)) + l′(E(hj)).

Lastly we prove that l = l′ ◦ g:

(l′ ◦ g)(ei, fj) = l′(eif
H
j ) = l′(E(ij)) = l(ei, fj)

for every ei ∈ Bn1 and fj ∈ Bn2 for every i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. By
the linearity and the uniqueness stated in Theorem 2.2.1, it follows that Mn1×n2(K)
with the outer product is isomorphic to the tensor space Kn1 ⊗Kn2 .

Henceforth tensors will be the abstract elements of tensor product of vector
spaces. Before discussing further results, we will try to extend some aspects of
matrices to tensors. A central concept in the previous section was the rank of a
matrix. As matter of fact the singular values theorem and the Schmidt, Mirsky,
Eckhart, Young theorem are based on this number. But when the order d of a tensor
is greater then 2, defining the rank is not natural anymore. Extending matrix rank
definition requested time and efforts. Meanwhile other definitions were proposed,
but the one proved to better extend the matrix rank definition is the following.
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Definition 2.2.9. Given a field K and d, n1, . . . , nd ∈ N, let A ∈ Kn1 ⊗ . . . ⊗ Knd

be a tensor. The rank of A is the least r ∈ N such that

A =

r∑
i=1

αi(v
1
i ⊗ v2i ⊗ . . .⊗ vdi )

with αi ∈ K and vji ∈ Knj for every j ∈ {1, . . . , d} and for every i ∈ {1, . . . , r}.

From an applicative point of view, there are other tensor rank definitions, which
will be useful. To present themultilinear rank, we firstly investigate relations between
tensors and tensorial subspaces.

Definition 2.2.10. Given a field K and d, n1, . . . , nd ∈ N and let V be a subspace
of Kn1 ⊗ . . . ⊗ Knd . If there exist Vi subspace of Kni for every i ∈ {1, . . . , d} such
that

V = V1 ⊗ . . .⊗ Vd,

then V is a separable tensor subspace of Kn1 ⊗ . . .⊗Knd .

Notice that not every subspace of Kn1 ⊗ . . .⊗Knd is separable, as shown in the
following example.

Example 2.2.11. Let V a vector space over the field K. We define the symmetric
2-tensors as

Sym2(V) = span{v ⊗ v | v ∈ V}.

It is a subspace of V ⊗ V, but it can not be written as W1 ⊗ W2 with Wi subspace
of V for every i ∈ {1, 2}. Indeed elements of W1 ⊗ W2 of the form w1 ⊗ w2 will not
necessary have w1 = w2 with wi ∈ Wi for every i ∈ {1, 2}.

The structure of a separable tensor spaces has some consequences over its ele-
ments.

Definition 2.2.12. Given a field K and d, n1, . . . , nd ∈ N, let A ∈ Kn1 ⊗ . . .⊗Knd

be a tensor. The multilinear rank of A is the tuple (r1, . . . , rd) such that there exists
a minimal separable tensor subspace V1 ⊗ . . . ⊗ Vd, containing A, in the following
sense:

ri = min
Vi subspace of Kni

dim(Vi)

for every i ∈ {1, . . . , d}.

The previous definition of multilinear rank is not easy to handle. Therefore we
introduce a central concept in tensor decomposition.

Definition 2.2.13. Given a field K and d, n1, . . . , nd ∈ N, let Vj be a subspace of
Knj for every j ∈ {1, . . . , d} and let σ ∈ Sd be a permutation over d integers. The
set {σ(1), . . . , σ(d)} is split in two subsets I1 = {h1 . . . , hs} and I2 = {l1, . . . , lt}
such that:
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• the cardinality of I1 and I2 is respectively s and t, whose sum is equal to d;

• I1 ∪ I2 = {1, . . . , d};

• I1 ∩ I2 = ∅.

For every tensor A ∈ V1 ⊗ . . .⊗ Vd such that:

A =
r∑
i=1

αiv
1
i ⊗ . . . . . .⊗ vdi ,

the (h, l)-flattening of A is

A(h,l) =
r∑
i=1

(αiv
h1
i ⊗ . . .⊗ v

hs
i )⊗ (vl1i ⊗ . . .⊗ v

lt
i )

with αi ∈ K and vji ∈ Vj for every j ∈ I1 ∪ I2 for every i ∈ {1, . . . , r}.
If s is equal to 1, i.e. I1 = {k}, the k-flattening is

A(k) =

r∑
i=1

(αiv
k)⊗ (vl1i ⊗ . . .⊗ v

ld−1

i )

with αi ∈ K and vji ∈ Vj for every j ∈ I1 ∪ I2 for every i ∈ {1, . . . , r}.

Remark 2.2.14. The flattening definition holds on the isomorphism between V1 ⊗
. . .⊗ Vd and Vh1 ⊗ . . .⊗ Vhs ⊗ V∗l1 ⊗ . . .⊗ V∗lt .

Actually the h-flattening of a tensor A ∈ V1 ⊗ . . . ⊗ Vd is a matrix for every
h ∈ {1, . . . , d}. Fixed Bi the canonical basis of Vi of cardinalitymi ∈ N, withmi ≤ ni
for every i ∈ {1, . . . , d}, the flattening A(h) is represented with a matrix A(h) such
that its j-th column is the image through A(h) of e

l1
j1
⊗ . . .⊗ eld−1

jd−1
with respect to Bh

for every elpjq ∈ Blp , for every jq ∈ {1, . . . ,mq} and for every q ∈ {1, . . . , d} \ {h}.
To make the computation of multilinear rank strongly easier the following proposition
is important.

Proposition 2.2.15. Given a field K and d, n1, . . . , nd ∈ N, let Wj be a subspace
of Knj for every j ∈ {1, . . . , d}. If A ∈ W1 ⊗ . . . ⊗ Wd is a tensor of multilinear
rank (r1, . . . , rd), then the subspace Vi of Wi generated by the columns of A(i) has
dimension ri for every i ∈ {1, . . . , d}.

Proof. For every tensor A ∈ W1 ⊗ . . . ⊗ Wd, we assume that W1 ⊗ . . . ⊗ Wd is the
subspace with the least dimension to which A belongs, i.e. ri = dim( Wi) is the
i-th component of the multilinear rank for every i ∈ {1, . . . , d}. Then fixed h ∈
{1, . . . , d}, we define the set I = {l1, . . . , ld−1} obtained through a permutation of
{1, . . . , d} \ {h}.
So by definition, the h-flattening A(h) belongs to Wh ⊗ W∗l1 ⊗ . . . ⊗ W∗ld−1

. But we
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notice that fixed a basis for Wi for every i ∈ {1, . . . , d}, A(h) can be represented
by a matrix A(h) ∈ Mnh×N where N =

∏d
i=1
i 6=h

ni. We can conclude that the N

columns of A(h) are coordinates of vectors belonging to Wh. Set mh = dim(Vh)

where Vh = span{(A(h))(·,j)}Nj=1, by definition of generated subspace, we have that:

Vh ⊆ Wh

which means that mh ≤ rh. However by the minimality of rh, we obtain that
mh = rh.

Corollary 2.2.16. Given a field K and d, n1, . . . , nd ∈ N, let Wj be a subspace of
Knj for every j ∈ {1, . . . , d}. Then for every A ∈ W1 ⊗ . . . ⊗ Wd of multilinear
rank (r1, . . . , rd) the rank of matrix associated to the i-th flattening is ri for every
i ∈ {1, . . . , d}.

Proof. By the main proposition ri = dim(Vi), with Vi the subspace generated by the
columns of A(i) for every i ∈ {1, . . . , d}. So we get that dim(Vi) = rank(A(h)).

Example 2.2.17. Consider the matrix space Mm×n(K) which in Example 2.2.8 has
been proved to be isomorphic to Km⊗Kn. Reminding that example, we get that for
every v ∈ Km and w ∈ Kn then

v ⊗ w = vwT =


v1
v2
...
vm

 [w1 w2 . . . wn
]

=


v1w1 v1w2 . . . v1wn
v2w1 v2w2 . . . v2wn
...

...
. . .

...
vmw1 vmw2 . . . vmwn

 .
whose rank is 1. We remind that every matrix of rank r can be seen trivially as sum
of r rank 1 matrices. Therefore writing every A ∈ Km ⊗Kn as a linear combination
of r rank 1 tensors is equivalent to writing its correspondent matrix as a linear
combination of rank 1 matrices. So the rank of A as matrix is also the rank r of A
seen as tensor. Computing now the multilinear rank of A is equivalent, thanks to
Corollary 2.2.16 to compute the rank of the 1-st and 2-nd flattening. So we have
that r1 = rank(A) = r. Then applying the hermitian operator to the first flattening
and again Corollary 2.2.16, we get that

r1 = r = rank(A) = rank(AH) = r2.

We have shown a well known concept: row rank and column rank are equal for
matrices.

The 2-order tensors constitute a special case: indeed for d ≥ 3 the previous
properties do not hold anymore. We can find a d order tensor such that the rank
and components of the multilinear rank do not coincide anymore. We will also show
a less trivial multilinear rank computation with the next example.
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Example 2.2.18. Given a field K and n ∈ N, such that n ≥ 2, let u, v ∈ Kn be
linearly independent vectors. Then the tensor

A = u⊗ u⊗ v + u⊗ v ⊗ u+ v ⊗ u⊗ u

belongs to Kn ⊗Kn ⊗Kn. We know that the rank of A is 3, cf. [mate7]. This is a
classical tensor result, cf. eg. [mate8].
Since n ≥ 2 and since u and v are linearly independent, there exists a basis B of Kn

such that u, v ∈ B. Let B′ be the tensor basis of Kn ⊗ Kn ⊗ Kn, generated from B

elements. So tensors u⊗u⊗ v, u⊗ v⊗u and v⊗u⊗u belongs to B′. However since
A has not zero coefficients only with respect u ⊗ u ⊗ v, u ⊗ v ⊗ u and v ⊗ u ⊗ u,

we can suppose n = 2. Let u =

[
1
0

]
and let v =

[
0
1

]
. With this choice computing

explicitly the tensor, its flattenings and its multilinear rank will be easy.

1 0

0 0
0 1

1 0

Figure 2.3: Tensor A

The flattenings are

A(1) =

[
0 1 1 0
1 0 0 0

]
A(2) =

[
0 1 1 0
1 0 0 0

]
A(3) =

[
0 1 1 0
1 0 0 0

]
whose rank is 2. Therefore the rank is different from each component of the multi-
linear rank, which is (2, 2, 2).

We can find an upper bound for the multilinear rank components with the fol-
lowing result, cf. [mate9].

Lemma 2.2.19. Given d, n1, . . . , nd ∈ N and a field K for every A ∈ Kn1⊗ . . .⊗Knd

of multilinear rank (r1, . . . , rd), we show that:

ri ≤
d∏
j=1
j 6=i

rj

for every i ∈ {1, . . . , d}.

Proof. Let A ∈ Kn1 ⊗ . . . ⊗ Knd a tensor. By the definition of multilinear rank
A ∈ V1 ⊗ . . . ⊗ Vd with Vi subspace of Kni of dimension ri for every i ∈ {1, . . . , d}.
Chosen h ∈ {1, . . . , d} and ρ a permutation of d − 1 elements, we remind that the
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h-flattening A(h) belongs to Vh ⊗ V∗l1 ⊗ . . . ⊗ V∗ld−1
where I = {l1, . . . , ld−1} is the

image through ρ of {1, . . . , d} \ {h}. Since we can associate a matrix A(h) to the
h-flattening, then we define N =

∏d
j=1
j 6=h

nj and V the subspace of KN generated by

the nh rows of A(h). Consequently V is a subspace of V∗l1 ⊗ . . . ⊗ V∗ld−1
, which is

isomorphic to Vl1 ⊗ . . .⊗ Vld−1
. So we have:

rh = dim(Vh) = dim(V) ≤
d∏
j=1
j 6=h

dim(Vj),

which is the thesis.

Before illustrating some of the principal tensor decomposition techniques de-
veloped recently, we want to state clearly the problem under investigation, i.e. when
and how we can approximate a tensor as we did for matrices. Firstly we explicit the
Frobenius norm, our measure, for tensors to describe numerically the goodness of
the approximation.

Definition 2.2.20. Given a field K and d,m, n1, . . . , nd ∈ N, fixed j ∈ {1, . . . , d}
and a basis for Kni for every i ∈ {1, . . . , d}, then the inner product is defined as

< · , · >: (Kn1 ⊗ . . .⊗Knd)× (Kn1 ⊗ . . .⊗Knd) 7→ K

such that for every tensor A,B ∈ Kn1⊗. . .⊗Knd written with respect to the canonical
basis as

A =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

ai1,i2,...,id(e1i1 ⊗ e
2
i2 ⊗ . . .⊗ e

d
id

)

and

B =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

bi1,i2,...,id(e1i1 ⊗ e
2
i2 ⊗ . . .⊗ e

d
id

)

then

< A ,B >=

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

ai1,i2,...,idbi1,i2,...,id

The inner product induces on tensors the Frobenius norm:

‖A‖ =
√
< A ,A > =

√√√√ n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

|ai1,i2,...,id |2.

In the previous section, we have proved the Schmidt, Mirsky, Eckhart, Young
theorem, which states that for every matrix A ∈Mm×n(K) of rank r there exists the
best rank s approximation for every s ∈ {1, . . . , r} in the Frobenius norm. Looking
at this optimal results, mathematicians tried to expand it to tensors, developing High
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Order Singular Value Decomposition, HOSVD. With our discussion we will focus on
some important improvements of HOSVD. Vannieuwenhoven et others showed that
this truncation optimality holds only for some special tensors, called orthogonally
decomposable tensors, cf. [mate10]. However they highlighted that only elements
from an open set of positive Lebesgue measure satisfy this condition in the space
of complex tensors. Moreover when the rank is small, this set has zero Lebesgue
measure. This is the reason why we will talk about infimum instead of minimum in
the following problem presentation.
Let A ∈ Kn1 ⊗ . . . ⊗ Knd be a tensor and let (r1, . . . , rd) ∈ Nd be a tuple. We will
discuss if there exists and in case how to determine a tensorM of multilinear rank
lower or equal component-wise than (r1, . . . , rd) which minimizes the Frobenius norm
of the tensor difference, i.e.

M = arg inf
mlrank(T )≤(r1,...,rd)

‖A − T ‖ .

This problem is also known as Low MultiLinear Rank Approximation, or LMLRA.
M. Ishteva and L. De Lathauwer firstly stated these problem and introduced this
acronym, cf. [mate11].
We underline that looking for a tensorM∈ Kn1⊗. . .⊗Knd satisfying the stated rank
properties means searching Vi subspace of Kni of dimension ri for every i ∈ {1, . . . , d}
such that if the approximation tensorM exists, it belongs to V1⊗ . . .⊗ Vd. In other
words we search if there exists a family of subspaces of a fixed dimension, whose
tensor product minimizes the distance from a fixed tensor, and in case which is.
Therefore we can define the following problem, equivalent to the LMLRA. Fixed a
tensor A ∈ Kn1⊗ . . .⊗Knd and a tuple (r1, . . . , rd) ∈ Nd, we investigate the existence
of the subspace Vi of Kni of dimension ri for every i ∈ {1, . . . , d} such that

V1 ⊗ . . .⊗ Vd = arg min
dim(Si)=ri

Si⊆Kni

for every i∈{1,...,d}

inf
T ∈S1⊗...⊗Sd

‖A − T ‖ .

Remark 2.2.21. Fixed A ∈ Kn1 ⊗ . . .⊗Knd and a multilinear rank (r1, . . . , rd), by
the last formulation of the LMLRA, let B ∈ Kn1 ⊗ . . .⊗Knd be such that

B = arg inf
T ∈S1⊗...⊗Sd

‖A − T ‖

for every Si subspace of Kni of dimension ri for every i ∈ {1, . . . , d}. Consequently
for every X ∈ S1 ⊗ . . . ⊗ Sd we define the function fX : K 7→ K such that fX is
fX (t) =‖A − B + tX‖2 for every t ∈ K. Using the definition of Frobenius norm, we
get that

fX (t) =< A−B+ tX ,A−B+ tX >=< A−B ,A−B > +2t < A−B ,X > +t2 < X , X >

which is equivalent to

fX (t) =‖A − B‖2 + t2‖X‖2 + 2t < A− B ,X > .
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Since f is a polynomial of degree 2, it follows that

lim
t→+∞

fX (t) = +∞.

Moreover by the definition of B, we get that fX (0) = ‖A − B‖2 ≤ fX (t) for every
t ∈ K. Therefore t0 = 0 has to be a inf of f . Consequently computing the first
derivative of fX with respect to t in t0, we obtain

0 =
dfX
dt

∣∣∣
t0=0

= 2(t‖X‖2− < A− B ,X >)
∣∣∣
t0=0

=< A− B ,X > .

Because the last equation holds for every X ∈ S1 ⊗ . . .⊗Sd, we get

A− B ∈ (S1 ⊗ . . .⊗Sd)
⊥,

which means that B is the orthogonal projection of A in S1 ⊗ . . .⊗Sd.

Remark 2.2.22. The idea of this remark is visually trivial, considering the following
example. In R2 we fix a line r and a vector P , which correspond to the linear subspace
and the tensor respectively. The point of r with the minimum distance from P is the
orthogonal projection of P on r.

x

y

r P

ε′

ε

P⊥

Figure 2.4: The line which minimizes the distance between P and r is ε, which is
evidently shorter than ε′ for example.

The last remark becomes a clue to develop the HOSVD decomposition techniques,
which will be presented. However it is necessary to investigate the structure of
projectors over a separable tensor subspace.

Definition 2.2.23. Given m,n ∈ N and a field K, fixed V a subspace of Km of
dimension n, the projector into V is the linear application PV : Km 7→ Km such that:

• PV(x) = x for every x ∈ V;

• PV ◦ PV = PV.
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If there is a vector product < · , · > defined over K, then PV is an orthogonal projector
over V if for every x, y ∈ K we get

< PV(x) , y >=< x ,PV(y) > .

Fixed x ∈ V and y ∈ V⊥, applying the orthogonal projector PV to their scalar
product we get

0 =< x , y >=< PV(x) , y >=< x ,PV(y) > .

Since the previous equation holds for every x ∈ V, we have that PV(y) = 0. Moreover
we remind that for every x ∈ K there exists x‖ ∈ V and x⊥ ∈ V⊥ such that
x = x⊥ + x‖. So we can observe that

PV⊥(x⊥) = x⊥ = x− x‖ = x− PV(x‖) = (I − PV)(x).

For any PV orthogonal projector, its orthogonal projector is

P⊥V = PV⊥ = 1− PV.

Remark 2.2.24. Given a vector space Kn and an orthogonal projector PV over its
subspace V, if there is a norm over Kn then ‖PV(x)‖ ≤‖x‖. For every x ∈ Kn there
exists x‖ ∈ V and x⊥ ∈ V⊥ such that x = x⊥ + x‖. Obviously x can be written as
x = (x− x⊥) + x⊥. So computing the norm we have that∥∥∥x∥∥∥2 =< (x− x⊥) + x⊥ , (x− x⊥) + x⊥ >=

∥∥∥(x− x⊥)
∥∥∥2 +

∥∥∥x⊥∥∥∥2
since x‖ = x− x⊥ and x⊥ are orthogonal. But reminding that PV(x⊥) = 0, we get∥∥∥x∥∥∥2 =

∥∥∥(x− x⊥)
∥∥∥2 +

∥∥∥x⊥∥∥∥2 ≥∥∥∥(x− x⊥)
∥∥∥2 =

∥∥∥x‖∥∥∥2 =
∥∥∥PV(x‖)

∥∥∥2 =
∥∥∥PV(x)

∥∥∥2 .
This definition of projector into a subspace is not very handy. However it can be

represented with a matrix. Before stating and proving this result, we introduce the
Moore-Penrose inverse.

Definition 2.2.25. Given a matrix A ∈ Mm×n(K), the Moore-Penrose inverse, or
pseudoinverse, A† ∈Mn×m is such that

• AA†A = A;

• A†AA† = A†;

• (AA†)H = AA†;

• (A†A)H = A†A.

The following proposition explicit Moore-Penrose inverse.
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Proposition 2.2.26. Given a matrix A ∈Mm×n(K):

1. if m is equal to n and A is invertible, then A−1 = A†;

2. if m is different from n and if AHA is invertible, then A† = AH(AAH)†;

3. if m is different from n and if AAH is invertible, then A† = AH(AAH)†.

Proof. Cf. [mate2].

We can now explicit projectors with matrices through the next lemma.

Lemma 2.2.27. Given m,n ∈ N and a field K, let B = {v1, . . . , vm} of Km be an
orthonormal basis. If V is a subspace of Km of dimension n, then the projector PV

can be represented with respect to the given basis as

PV = QQH

where the j-th column of Q is the vector vhj for every hj ∈ {1, . . . ,m}, for every
j ∈ {1, . . . , n}.

Proof. Since V is a subspace of Km of dimension n, we can assume, without loss
of generality, that V is generated by the first n vectors of B. Therefore the matrix
Q ∈ Mm×n(K) is such that the j-th column of Q is vj for every j ∈ {1, . . . , n}. We
notice that by definition for every x ∈ V and for every i ∈ {1, . . . , n} there exists
αi ∈ K such that v =

∑n
i=1 αivi, i.e.x1...
vm

 =

 v11 . . . v1n
...

. . .
...

vm1 . . . vmn


α1

...
αm

 .
Fixed a ∈ Km such that ai = αi for every i ∈ {1, . . . ,m}, the last equation is
equivalent to x = Qa. Applying the Moore-Penrose inverse we get

a = (QHQ)−1QHx.

But QHQ is the identity matrix, thanks to the orthonormality of the elements of B
and consequently a = QHx. By definition of linear projector we have that

PV(x) = x = Qa = QQHx.

Then for every y ∈ V⊥, obviously QHy = 0, since

QH(i,·)y = vHi y =< vi , y >= 0

for every i ∈ {1, . . . , n} by the definition of orthogonality. On the other side PS(y) =
0 by the orthogonality. Every w ∈ Km can be written as w = x + y with x ∈ V
and y ∈ V⊥. Applying the linearity of the projector and the previous identities we
obtain

PV(w) = PV(x+ y) = PV(x) + PV(y) = QQHx+ 0 = QQHx+QQHy = QQHw.
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This link between projectors and matrices will make easier the proof related to
the structure of projectors over separable tensor subspaces.

Proposition 2.2.28. Given d, n1, . . . , nd ∈ N and a field K, it is set Vi a subspace of
Kni for every i ∈ {1, . . . , d}. If PVi is the projector over Vi for every i ∈ {1, . . . , d},
then fixed the separable tensor subspace V = V1 ⊗ . . .⊗ Vd its projector is the multi-
linear application

PV = PV1 ⊗ . . .⊗ PVd .

Proof. For every subspace Vi of dimension ri we fix an orthonormal basis Bi =
{qi1, . . . , qiri} for every i ∈ {1, . . . , d}. Consequently we define the matrix Qi ∈
Mni×ri(K) such that its j-th column is the vector qij for every j ∈ {1, . . . , ri} for
every i ∈ {1, . . . , d}. Applying Lemma 2.2.27, we have that PVi(x) = QiQ

H
i x for

every x ∈ Kni for every i ∈ {1, . . . , d}. Moreover since Bi is a basis for Vi for every
i ∈ {1, . . . , d}, we get that

B = {q1i1 ⊗ . . .⊗ q
d
id
| for every ij ∈ {1, . . . , rj} and for every j ∈ {1, . . . , d}}

is a basis for V by definition. So every tensor X ∈ V can be seen as a linear
combination of B elements, i.e. there exists B ∈ Kn1 ⊗ . . .⊗Knd such that

X = (Q1, . . . , Qd)B.

Applying the Moore-Penrose pseudo-inverse for the matrixQj for every j ∈ {1, . . . , d}
in the last equation, we obtain

(QH1 , . . . , Q
H
d )X = B

since (QHj Qj) is the identity matrix of order rj for every j ∈ {1, . . . , d}.
By properties of the projector, we get that if X ∈ V, then

PV (X ) = X = (Q1Q
H
1 , . . . , QdQ

H
d )X .

On the other side if Y ∈ Kn1 ⊗ . . .Knd \ V, then Y ∈ V⊥ = V⊥1 ⊗ . . . ⊗ V⊥d by
separability. So since the matrices QjQHj act independently one from the other for
every j ∈ {1, . . . , d}, we get that

PV(Y) = 0 = (Q1Q
H
1 , . . . , QdQ

H
d )Y,

because when QHj is applied to Y we have the 0 vector thanks to the orthogonality.
In conclusion every A ∈ Kn1⊗ . . .⊗Knd can be written as A = X +Y and projecting
in V we obtain:

PV(A) = PV(X ) + PV(Y) = (Q1Q
H
1 , . . . , QdQ

H
d )(X + Y) = (Q1Q

H
1 , . . . , QdQ

H
d )A

by linearity of PV and previous identities. Since the multi-linearity of the projector
and the definition of PVi for every i ∈ {1, . . . , d} the thesis follows.
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Corollary 2.2.29. Given d, n1, . . . , nd ∈ N and a field K, we set Vi a subspace of Kni

for every i ∈ {1, . . . , d}. Defined PVi the projector over Vi for every i ∈ {1, . . . , d}, for
every i ∈ {1, . . . , d} the multilinear application πi : Kn1⊗ . . .⊗Knd 7→ Kn1⊗ . . .⊗Knd

is such that

πi(Kn1 ⊗ . . .⊗Knd) = Kn1 ⊗ . . .⊗PVi(K
ni)⊗ . . .⊗Knd = Kn1 ⊗ . . .⊗ Vi⊗ . . .⊗Knd .

Then for every tensor A ∈ Kn1⊗. . .⊗Knd we have the commutativity of the projectors
composition

πi ◦ πj(A) = πj ◦ πi(A)

for every i, j ∈ {1, . . . , d}.

Proof. If j is equal to i, then the thesis is trivial. We assume that i, j ∈ {1, . . . , d}
are distinct and without loss of generality we suppose that j = i− 1. By the multi-
linearity of the projector, we have that

πi ◦ πi−1(Kn1⊗...⊗Kni−1⊗Kni⊗...⊗Knd) =πi(Kn1⊗...⊗Vi−1⊗Kni⊗...⊗Knd)=

=Kn1⊗...⊗Vi−1⊗Vi⊗...⊗Knd ,

while

πi−1 ◦ πi(Kn1⊗...⊗Kni−1⊗Kni⊗...⊗Knd) =πi−1(Kn1⊗...⊗Kni⊗Vi⊗...⊗Knd)=

=Kn1⊗...⊗Vi−1⊗Vi⊗...⊗Knd ,

thanks to the independency of the linear components.

Corollary 2.2.30. Given d, n1, . . . , nd ∈ N and a field K, we set Vi a subspace of Kni

for every i ∈ {1, . . . , d}. Defined PVi the projector over Vi for every i ∈ {1, . . . , d},
for every i ∈ {1, . . . , d} we fix the multilinear application πi : Kn1 ⊗ . . . ⊗ Knd 7→
Kn1 ⊗ . . .⊗Knd such that

πi(Kn1 ⊗ . . .⊗Knd) = Kn1 ⊗ . . .⊗PVi(K
ni)⊗ . . .⊗Knd = Kn1 ⊗ . . .⊗ Vi⊗ . . .⊗Knd .

Then for every tensor A ∈ Kn1 ⊗ . . .⊗Knd we have that

PV(A) = (πd . . . π1)(A),

Proof. The thesis follows from the definition of πi for every i ∈ {1, . . . , d} and Co-
rollary 2.2.29.

With all the necessary instruments well analysed, we can now investigate the
Hitchcock-Tucker decomposition. Let’s recall the LMLRA problem structure. Given
A ∈ Kn1⊗. . .⊗Knd and a multilinear rank (r1, . . . , rd), if we know thatA belongs to a
separable tensor subspace, i.e. A ∈ V1⊗. . .⊗ Vd, then fixed a basis Bi = {vi1, . . . , viri}
for Vi for every i ∈ {1, . . . , d} there exists C ∈ Kn1 ⊗ . . .⊗Knd such that

A = (V1, . . . , Vd)C
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where the j-th column of Vi is the vector vij for every j ∈ {1, . . . , ri}. Applying the
Moore-Penrose pseudo-inverse we obtain the inverse relation:

(V †1 , . . . , V
†
d )A = C.

Unifying the two relations we get the wanted decomposition

A = (V1, . . . , Vd)(V
†
1 , . . . , V

†
d )A,

which reveals through a basis the separable tensor subspace in which A lives.
A significant problem is choosing a basis, which is not unique, even when the sep-
arable tensor subspace is known. Recently, in 2012, De Lathauwer, De Moor and
Vandewalle made a step forward. As reported in [mate12] their strategy is based
on the singular value decomposition. Fixed A ∈ Kn1 ⊗ . . .Knd , which belongs to the
separable tensor subspace V1 ⊗ . . . ⊗ Vd with multilinear rank (r1, . . . , rd), we com-
pute for every j ∈ {1, . . . , d} the singular value decomposition of the j-th flattening
of A, i.e.

A(j) = UjΣjV
T
j .

Then we choose as basis of Vj the rj rows of Uj , i.e. those which are naturally found
following the proof of Theorem 2.1.11. This technique, called High Order Singular
Value Decomposition is extremely advantageous. As a matter of fact the Moore-
Penrose pseudo-inverse is U †j = (UHj Uj)

−1UHj = UHj since UHj Uj is the identity
matrix of order rj for every j ∈ {1, . . . , d}. Therefore the decomposition formula
becomes

A = (U1, . . . , Ud)(U
H
1 , . . . , U

H
d )A = (U1U

H
1 , . . . , UdU

H
d )A.

Thanks to Corollary 2.2.29, the last identity is equivalent to

A = π1 ◦ . . . ◦ πdA.

Definition 2.2.31. Given d, n1, . . . , nd ∈ N and a field K for every A ∈ Kn1 ⊗ . . .⊗
Knd of multilinear rank (r1, . . . , rd), let Ui ∈Mni×ri(K) be the left orthogonal matrix
from the thin SVD of A(i) flattening for every i ∈ {1, . . . , d}. The tensor basis of
HOSVD is the set

B = {u1i1⊗. . .⊗u
d
id
| uiji = (Ui)(·,ji) for every j ∈ {1, . . . , ri} for every i ∈ {1, . . . , d}}.

The core tensor is the tensor C ∈ Kn1 ⊗ . . .⊗Knd such that

C = (UH1 , . . . , U
H
d )A.

Obviously the HOSVD technique has the proper algorithmic structure. Its pseudo
code is the following.
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Algorithm 2 HOSVD
Input: a tensor A ∈ V1 ⊗ . . .⊗ Vd
Output: the HOSVD basis in matrix form (U1, . . . , Ud)
Output: the HOSVD core tensor C ∈ Kn1 ⊗ . . .⊗Knd

for i = 1, 2, . . . , k do
Compute SVD of A(i), i.e. A(i) = UiΣiV

T
i ;

end
C ← (UH1 , . . . , U

H
d )A;

We can notice that HOSVD provides a sparse representation of the given tensor,
whose costs in terms of storage use can be easily computed. Indeed given A ∈
Kn1 ⊗ . . .⊗Knd whose multilinear rank is known to be (r1, . . . , rd), from HOSVD we
get that A = (U1, . . . , Ud)C. The storage of each matrix Ui costs niri memory units
for every i ∈ {1, . . . , d}, while storing the core tensor C needs

∏d
i=1 ri memory units.

In conclusion the sparse representation of A costs

d∑
i=1

niri +

d∏
i=1

ri memory units.

The error made using orthogonal projection is exactly estimated reminding the pro-
jectors properties.

Proposition 2.2.32. Given d, n1, . . . , nd ∈ N and a field K, let V = V1 ⊗ . . . Vd be
a separable tensor subspace of Kn1 ⊗ . . .⊗Knd, where Vi is a subspace of dimension
ri of Kni for every i ∈ {1, . . . , d}. Set an orthogonal tensor basis

B = {u1i1 ⊗ . . .⊗ u
d
id
| for every j ∈ {1, . . . , ri} for every i ∈ {1, . . . , d}}

of V, we define the orthonormal matrix Ui ∈Mni×ri(K) such that (Ui)(·,ji) = uiji for
every j ∈ {1, . . . , ri}, for every i ∈ {1, . . . , d}. The projector

πi : Kn1 ⊗ . . .⊗Knd 7→ Kn1 ⊗ . . .⊗Knd

is such that for every A ∈ Kn1 ⊗ . . .⊗Knd

πi(A) = (UHi Ui) ·i A

for every i ∈ {1, . . . , d}. Then for every A ∈ Kn1 ⊗ . . . ⊗ Knd and for every ρ
permutation of d elements, we get that:

‖A − PV(A)‖2 =
d∑
i=1

∥∥πρi−1 . . . πρ1(A) − πρi . . . πρ1(A)
∥∥2 . (2.22)

Proof. To shorten the notation, we fix ρ equal to the identity permutation without
loss of generality. Firstly chosen a tensor A ∈ Kn1 ⊗ . . .⊗Knd we observe that using
a telescopic sum the expression A− PV(A) can be written as
A− PV(A) = (1− π1...πd)(A) = [(1− π1) + (π1 − π2π1) + ...+ (πd−1...π1 − πd...π1)](A). (2.23)
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thanks to Corollary 2.2.30. Then reminding that P⊥ = 1− P for any P orthogonal
projector, we get that

πi−1 . . . π1(A) − πi . . . π1(A) = (1− πi)(πi−1 . . . π1(A)) = π⊥i πi−1 . . . π1(A) (2.24)

for every i ∈ {1, . . . , d}. Besides for every j, i ∈ {1, . . . , d} such that j > i, we
highlight that

πj−1...πi...π1(A) − πj ...πi...π1(A) = (πiπj−1...πi+1πi−1...π1 − πiπj ...πi+1πi−1...π1)(A). (2.25)

thanks to the commutativity of the projectors, stated in 2.2.29. But recalling again
the expression of the orthogonal projections, Equation 2.24 becomes

πj−1...πi...π1(A) − πj ...πi...π1(A) = πiπ
⊥
j πj−1 . . . π1(A). (2.26)

Now we notice that the quantities in Equation 2.24 and in Equation 2.26 are ortho-
gonal. Lastly we point out that by Equation 2.23 and by definition of norm the term
‖A − PV(A)‖2 is equivalent to the scalar product between

[(1− π1) + (π1 − π2π1) + ..+ (πd−1..π1 − πd..π1)](A)

and itself. Since for every i, j ∈ {1, . . . , d} such that j > i the j-th and the i-th term
are orthogonal, as highlighted in the previous equations, all the cross products are
null, i.e. the thesis.

Corollary 2.2.33. Under Proposition 2.2.32 hypothesis for every A ∈ Kn1⊗. . .⊗Knd

the error made is upper bounded, i.e.

‖A − PV(A)‖2 ≤
d∑
i=1

∥∥∥π⊥i (A)
∥∥∥2 .

Proof. If we choose the identity permutation in Proposition 2.2.32, fixed A ∈ Kn1 ⊗
. . .⊗Knd , the i-th term of the summation is

πi−1 . . . π1(A) − πi . . . π1(A) = (1− πi)(πi−1 . . . π1(A)) = π⊥i πi−1 . . . π1(A)

thanks to the relation between an orthogonal projector and its orthogonal. Using
the commutativity of projectors stated in 2.2.29, the last equation becomes

πi−1 . . . π1(A) − πi . . . π1(A) = πi−1 . . . π1(π
⊥
i (A)).

We apply Remark 2.2.24 using as projector πi−1 . . . π1 and π⊥i , getting∥∥∥πi−1 . . . π1(A) − πi . . . π1(A)
∥∥∥2 =

∥∥∥πi−1 . . . π1(π⊥i (A))
∥∥∥2 ≤∥∥∥π⊥i (A)

∥∥∥2 .
Repeating the same inequality for each term of Proposition 2.2.32 summation we get
the thesis.
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Example 2.2.34. Let A ∈ Kn1 ⊗Kn2 ⊗Kn3 be a tensor, which we want to approx-
imate at multilinear rank (r1, r2, r3) ∈ N3. Under this choice we can visualize the
desired output.

Figure 2.5: A 3-order tensor and its multilinear approximation in light red.

But easily we can decompose the error made, which in the picture is the remaining
white part, in three parts as stated in Proposition 2.2.32.

Figure 2.6: The error decomposed in three light blue parts.

The first component, most on the left picture in Figure 2.6 is the difference
between the original tensor and the projection of the approximation of A in the
first direction, i.e. π⊥1 (A). The central parallelepiped is the difference from the
previous remainder and parallelepiped the projection of the approximation of A in
the second direction, i.e. π⊥2 π1(A). In conclusion the last picture is the difference
from the previous reminder and the projection of the approximation of A in the
third direction, i.e. π⊥3 π2π1(A). The figures highlight what is happening when a
projection is taken and subtracted. Moreover visually it is obvious that the order of
projection is not significant, i.e. projections commute.
Beside it could be useful for the next steps to visualize what is stated by Corollary
2.2.33.

Figure 2.7: The error decomposed in three green approximated parts.

The first element of the summation is the same and consequently the most left
picture of Figure 2.7 is equal to the left one of Figure 2.6, i.e. π⊥1 (A). However the
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next picture shows the difference between the original tensor A and its projection
in the second dimension, i.e. π⊥2 (A). Similarly the most right picture displays the
remainder of the difference between A and its projection in the third dimension, i.e.
π⊥3 (A). Through the image is clear that this is an approximation of the exact error,
which is smaller. Furthermore it is evident that the size of the object projected
through a composition of projections is smaller than the one obtained using just one
projection.

Usually, in applications, the multilinear rank of the given tensor is not known,
that explains the LMLRA formulation. Consequently working on the exact error
is not convenient. Therefore N. Vannieuwenhoven K. Meerbergen and R. Vandebril
developed two new strategies to approximate tensors, as reported in [mate13], when
the multilinear rank is not known. The first is based on the approximation of the
upper bound of the error, stated in 2.2.33. As a matter of fact reducing the upper
bound implies, thanks to the cited inequality, reducing the the exact error.
The Truncated Higher Order Singular Value Decomposition has the SVD as key
concept. Fixed A ∈ Kn1 ⊗ . . .⊗Knd , we consider the i-th term of the upper bound
summation, i.e.

0 ≤
∥∥∥π⊥i (A)

∥∥∥2 =
∥∥∥A− (UiU

H
i )·iA

∥∥∥2
by definition. By the positivity of each term of the previous expression, minimizing
the upper bound means minimizing each term of the upper bound summation, i.e.
taking the minimum of the norm of the difference between A and its projection in
just one direction each time. Because we approximate the tensor only with respect
to one direction each time, the minimization problem is mathematically

arg min
πi projection into Vi

∥∥∥π⊥i (A)
∥∥∥2 = arg min

Ui∈O(ni×ri)

∥∥∥A(i) − (UiU
H
i )A(i)

∥∥∥2 ,
i.e. we research the best approximation at rank ri for the i-th flattening of A for
every i ∈ {1, . . . , d}. However thanks to Theorem 2.1.19 the previous problem has a
close solution which is obtained through SVD of the i-th flattening of A, truncated
at the ri singular values for every i ∈ {1, . . . , d}.

Definition 2.2.35. Given d, n1, . . . , nd ∈ N, a field K and and a target multilinear
rank (r1, . . . , rd), for every A ∈ Kn1 ⊗ . . . ⊗ Knd , let Ui ∈ Mni×ri(K) be the left
orthogonal matrix from the thin SVD of Ai flattening for every i ∈ {1, . . . , d}, the
tensor basis of T-HOSVD is the set

B = {u1i1⊗. . .⊗u
d
id
| uiji = (U i)(·,ji) for every j ∈ {1, . . . , ri} for every i ∈ {1, . . . , d}}.

The T-HOSVD core tensor is the tensor C ∈ Kn1 ⊗ . . .⊗Knd such that

C = (U
H
1 , . . . , U

H
d )A.
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Again we can rewrite this technique in an algorithm form as follows.

Algorithm 3 T-HOSVD
Input: a tensor A ∈ Kn1 ⊗ . . .⊗Knd

Input: a target multilinear rank (r1, . . . , rd)
Output: the T-HOSVD basis in matrix form (U1, . . . , Ud)
Output: the T-HOSVD core tensor C ∈ Kn1 ⊗ . . .⊗Knd

for i = 1, 2, . . . , d do
Compute SVD of A(i), i.e. A(i) = UiΣiV

T
i ;

Store in U i the first ri columns of Ui
end
C ← (U

H
1 , . . . , U

H
d )A;

The amount of storage memory used is exactly the same as in the HOSVD.
However we can prove the relation between the error made with the T-HOSVD
approximation and the best (r1, . . . , rd) approximation, if it exists.

Proposition 2.2.36. Given d, n1, . . . , nd ∈ N and a field K, let Vi be a subspace
of dimension ri ∈ N of Kni for every i ∈ {1, . . . , d}. Let A ∈ Kn1 ⊗ . . . ⊗ Knd

be a tensor such that there exists A∗ ∈ Kn1 ⊗ . . . ⊗ Knd the best multilinear rank
(r1, . . . , rd) approximation, i.e.

A∗ = arg min
mlrank(T )≤(r1,...,rd)

‖A − T ‖ .

If the T-HOSVD approximation tensor is AT ∈ Kn1 ⊗ . . .⊗Knd of multilinear rank
(r1, . . . , rd), then we have that:

‖A −AT ‖ ≤
√
d‖A −A∗‖ .

Proof. Thanks to Corollary 2.2.33, we know that:

∥∥∥A−AT∥∥∥2 ≤ d∑
i=1

∥∥∥π⊥Ti(A)
∥∥∥2

where by the structure of the T-HOSVD the i-th term of the summation is∥∥∥π⊥Ti(A)
∥∥∥2 =

∥∥∥A− (U iU
H
i )·iA

∥∥∥2 =
∥∥∥A(i) − (U iU

H
i )A(i)

∥∥∥2 .
But Corollary 2.1.20 states that the best rank r approximation for every A ∈
Mm×n(K) matrix is

∑r
i=1 US

(i)V H , with the usual meaning for each matrix. Using
the associativity of the matrix product, we get that

r∑
i=1

US(i)V H = U(
r∑
i=1

S(i))V H .
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Noticing that the (r+k)-th column of S(i) is the null vector for every d ∈ {1, . . . , n},
we can conclude that

r∑
i=1

US(i)V H = U(

r∑
i=1

S(i))V H = U(

r∑
i=1

S
(i)
V H

where U is the matrix U truncated at the ri-th column, the matrix S(i) is the matrix
S(i) truncated at the r-th row. Applying the generalised SVD to the i-th flattening,
i.e.

A(i) = UiΣiV
H
i

and assuming that (Ui)(·,d) = ud for every d ∈ {1, . . . ,m} we notice that

U
H
i Ui =

u
H
1
...
uHr

 [u1 . . . ur . . . um
]

=

[
Iri 0

0 0

]

by the orthogonality. Moreover we can notice that

U iU
H
i A(i) = U iU

H
i UiΣiV

H
i = U iΣiV

H
i ,

where Σi is the matrix Σi truncated at the ri-th row for every i ∈ {1, . . . , d}. But
obviously Σi =

∑ri
j=1 S

(j)
i , where S(j)

i is defined as in Corollary 2.1.20 for every
j ∈ {1, . . . , ri} and consequently

U iU
H
i A(i) = U iΣiV

H
i = U(

ri∑
i=1

S
(i)

)V H ,

i.e. ∥∥∥A(i) − (U iU
H
i )A(i)

∥∥∥2 = min
B∈Mni×N (K)
rank(B)=ri

∥∥A(i) −B
∥∥2 with N =

d∏
j=1
j 6=i

nj

for every i ∈ {1, . . . , d}. By the last equation we have that∥∥∥π⊥Ti(A)
∥∥∥2 =

∥∥∥A(i) − (U iU
H
i )A(i)

∥∥∥2 ≤ ∥∥∥A(i) −A∗(i)
∥∥∥2

for every i ∈ {1, . . . , d} and consequently

∥∥∥A−AT∥∥∥2 ≤ d∑
i=1

∥∥∥π⊥Ti(A)
∥∥∥2 ≤ d∑

i=1

∥∥∥A(i) −A∗(i)
∥∥∥2 = d

∥∥∥A(i) −A∗(i)
∥∥∥2 .
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Remark 2.2.37. Since we are interested in application of T-HOSVD algorithm, we
take

A∗ = arg inf
mlrank(T )≤(r1,...,rd)

‖A − T ‖

for every A ∈ Kn1 ⊗ . . . ⊗ Knd , neglecting to check the existence of the best approx-
imation.

We have seen that the order of projectors application is not significant for the
T-HOSVD, but for the ST-HOSVD this is not true anymore. However in order
to simplify the notation we will follow the natural increasing order in applying the
projections in the ST-HOSVD, i.e. we will project firstly in the 1st direction, than
in the 2nd and so on, until the d-th direction. The idea of the Sequentially Truncated
High Order Singular Value is minimizing each term of the summation of Proposition
2.2.32. Let A ∈ Kn1 ⊗ . . . ⊗ Knd be a chosen tensor and (r1, . . . , rd) the target
multilinear rank of approximation, the first step is searching the projector which
minimises the first error term of Equation 2.22 is

arg min
π1

∥∥∥π⊥1 (A)
∥∥∥2 = arg min

U1∈O(n1×r1)

∥∥(U1U
H
1 )·1A

∥∥2 ,
i.e.

arg min
U1∈O(n1×r1)

∥∥(U1U
H
1 )A(1)

∥∥2 .
The last formulation of this first step has a close solution, thanks to Theorem 2.1.19.
We are looking for the best rank r1 approximation of the 1-st flattening. So we
can conclude that the matrix U1 obtained from the SVD of the first flattening of A
truncated at the r1-th column is such that

Û1 = arg min
U1∈O(n1×r1)

∥∥(U1U
H
1 )A(1)

∥∥2 .
We defined the core tensor of the first step,

C(1) = (ÛH1 , I, . . . , I)A.

Fixed the π̂1 = Û1Û
H
1 , the next step is looking for the projector which minimises the

second error term of Equation 2.22, i.e.

arg min
π2

∥∥∥π⊥2 π̂1(A)
∥∥∥2 = arg min

U2∈O(n2×r2)

∥∥∥(U2U
H
2 )·2(Û1Û

H
1 )·1A

∥∥∥2 .
But thanks to multilinearity, we can rewrite the last equation as

arg min
U2∈O(n2×r2)

∥∥∥(Û1)·1(U2U
H
2 )·2(ÛH1 )·1A

∥∥∥2
i.e.

arg min
U2∈O(n2×r2)

∥∥∥(Û1)·1(U2U
H
2 )·2C(1)

∥∥∥2 .
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Since Û1 is fixed, the second step problem becomes

arg min
U2∈O(n2×r2)

∥∥∥(U2U
H
2 )·2C(1)

∥∥∥2 = arg min
U2∈O(n2×r2)

∥∥∥(U2U
H
2 )·2C

(1)
(2)

∥∥∥2
whose solution is the matrix Û2 obtained through the SVD of the 2-nd flattening of
C(1) truncated at the r2-th column. Defined the new core tensor

C(2) = (ÛH1 , Û
H
2 , I, . . . , I)A,

we proceed similarly with the next ones. At the (d− 1)-th step we have defined the
(d− 1)-th core tensor

C(d−1) = (ÛH1 , Û
H
2 , . . . , Û

H
d−1, I)A.

For the last d-th step, we look for the projectors which minimises the last error term
of Equation 2.22, i.e.

arg min
πd

∥∥∥π⊥d π̂d−1 . . . π̂1(A)
∥∥∥2 ,

which using the multilinearity and the projectors properties becomes

arg min
Ud∈O(nd×rd)

∥∥∥(UdU
H
d )·d(Û1Û

H
1 , .., Ûd−1Û

H
d−1)·1,..,d−1

A
∥∥∥2

i.e.
arg min

Ud∈O(nd×rd)

∥∥∥(UdU
H
d )C(d−1)(k)

∥∥∥2 .
The solution of the last problem is the matrix Ûd obtained through the SVD of the
d-th flattening of the core tensor C(d−1) truncated at the rd-th column. We can now
define the central structures of ST-HOSVD.

Definition 2.2.38. Given d, n1, . . . , nd ∈ N and a field K, we fix the natural in-
creasing processing order from 1 up to d. For every A ∈ Kn1⊗ . . .⊗Knd and a target
multilinear rank (r1, . . . , rd), if i is equal to 0, the i-th partially truncated core tensor
is

C(0) = A

while if i ∈ {1, . . . , d}, it is

C(i) = (ÛH1 , Û
H
2 , . . . , Û

H
i−1, I, . . . , I)A

where Ûj ∈ Mnj×rj is the left orthogonal matrix from the thin SVD of the j-th
flattening of the core tensor C(j−1) for every j ∈ {1, . . . , i}.The ST-HOSVD core
tensor is

CST = C(k).
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With the same meaning for Ûj for every j ∈ {1, . . . , d}, the tensor basis of ST-
HOSVD is

B = {u1i1⊗. . .⊗u
d
id
| uiji = (Ûi)(·,ji) for every j ∈ {1, . . . , ri} for every i ∈ {1, . . . , d}}.

For every i ∈ {1, . . . , d}, the i-th ST-HOSVD partial approximation of A is

A(i) = (Û1Û
H
1 , . . . , ÛiÛ

H
i , I, . . . , I)A.

The ST-HOSVD approximation of A is

AST = A(k).

Also in this case we write the decomposition techniques in an algorithmic form.

Algorithm 4 ST-HOSVD
Input: a tensor A ∈ Kn1 ⊗ . . .⊗Knd

Input: a target multilinear rank (r1, . . . , rd)
Output: the ST-HOSVD basis in matrix form Û1, . . . , Ûd
Output: the ST-HOSVD core tensor C ∈ Kn1 ⊗ . . .⊗Knd

C ← A;
for i = 1, 2, . . . , d do

Compute SVD of C(i), i.e. C(i) = UiΣiV
T
i ;

Store in Ûi the first ri columns of Ui;
C ← (ÛHi )·iC;

end

Moreover we can describe the relation between the ST-HOSVD error and the one
made with the best (r1, . . . , rd) approximation, if it exists.

Proposition 2.2.39. Given d, n1, . . . , nd ∈ N and a field K, let Vi be a subspace
of dimension ri ∈ N of Kni for every i ∈ {1, . . . , d}. Let A ∈ Kn1 ⊗ . . . ⊗ Knd

be a tensor such that there exists A∗ ∈ Kn1 ⊗ . . . ⊗ Knd the best multilinear rank
(r1, . . . , rd) approximation, i.e.

A∗ = arg min
mlrank(T )≤(r1,...,rd)

‖A − T ‖ .

If the ST-HOSVD approximation tensor is AST ∈ Kn1 ⊗ . . . ⊗ Knd of multilinear
rank (r1, . . . , rd), then:

‖A −AST ‖ ≤
√
d‖A −A∗‖ .

Proof. By Proposition 2.2.32 the error of approximation by the ST-HOSVD is

‖A −AST ‖2 =
d∑
i=1

‖π̂i−1 . . . π̂1(A) − π̂i . . . π̂1(A)‖2 =
d∑
i=1

∥∥∥π̂⊥i (π̂i−1 . . . π̂1)(A)
∥∥∥2
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where π̂i = ÛiÛ
H
i as defined in the ST-HOSVD for every i ∈ {1, . . . , d}. Since the

construction of the ST-HOSVD, we notice that

π̂i = arg min
πi

∥∥∥π̂⊥i (π̂i−1 . . . π̂1)(A)
∥∥∥2 .

Consequently if we denote with πi the projections such that

A∗ = (πd . . . π1)(A)

we have ∥∥∥π̂⊥i (π̂i−1 . . . π̂1)(A)
∥∥∥2 ≤ ∥∥∥π⊥i (π̂i−1 . . . π̂1)(A)

∥∥∥2 ,
for every i ∈ {1, . . . , d}. By Remark 2.2.24, we get∥∥∥π̂⊥i (π̂i−1 . . . π̂1)(A)

∥∥∥2 ≤ ∥∥∥π⊥i (π̂i−1 . . . π̂1)(A)
∥∥∥2 ≤ ∥∥∥π⊥i (A)

∥∥∥2 .
Moreover thanks to Proposition 2.2.32, we have that∥∥∥π⊥i (A)

∥∥∥2 ≤ ∥∥∥A−A∗∥∥∥2
since for every i ∈ {1, . . . , d} we can choose a ρ permutation of d elements ρ such
that ρ(i) = 1. So we can conclude that

∥∥∥A−AST∥∥∥2 ≤ d∑
i=1

∥∥∥π̂⊥i (π̂i−1 . . . π̂1)(A)
∥∥∥2 ≤ d∑

i=1

∥∥∥π⊥i (A)
∥∥∥2 ≤ d

∥∥∥A−A∗∥∥∥2 .

Remark 2.2.40. Similarly to T-HOSVD, we are interested in application of ST-
HOSVD algorithm. So we take

A∗ = arg inf
mlrank(T )≤(r1,...,rd)

‖A − T ‖

for every A ∈ Kn1 ⊗ . . . ⊗ Knd , neglecting to check the existence of the best approx-
imation.

We have stated that the order of proceeding in ST-HOSVD is not negligible for
the approximation and the following example will confirm it.

Example 2.2.41. Let A ∈ R3 ⊗ R3 ⊗ R3 be a tensor of order three, such that:

A(·,·,1) =

2 4 7
5 6 3
9 3 5

 A(·,·,2) =

7 5 3
9 2 8
9 2 3

 A(·,·,2) =

8 4 6
3 2 5
9 3 4

 .
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Fixed the target multilinear rank (2, 2, 2), we approximate A to this multilinear rank
using ST-HOSVD and every ρ permutation of 3 elements. Denoting the approxima-
tion with the hat symbol, the results are∥∥∥A− Â[1,2,3]

∥∥∥ = 8.1912;
∥∥∥A− Â[1,3,2]

∥∥∥ = 8.1932;∥∥∥A− Â[2,1,3]

∥∥∥ = 7.4799;
∥∥∥A− Â[2,3,1]

∥∥∥ = 7.4497;∥∥∥A− Â[3,1,2]

∥∥∥ = 7.5001;
∥∥∥A− Â[3,2,1]

∥∥∥ = 7.4835.

Besides we have said that T-HOSVD tries to minimize the upper bound while
ST-HOSVD acts on the exact error. We are naturally induced to think that the
approximation obtained with the sequential truncated strategy is better with respect
to the truncated one in term of error reduction. However a simple example will show
that this is not always true.

Example 2.2.42. Let A ∈ R2 ⊗ R2 ⊗ R2 ⊗ R2 be a tensor of order four, such that:

A(·,·,1,1) =

[
0.5 −1.7
−1.3 −0.6

]
A(·,·,2,1) =

[
−2.4 −0.1
−0.7 1.4

]
A(·,·,1,2) =

[
0.1 0.1

2.2 −0.8

]
A(·,·,2,2) =

[
−0.3 −2.5

0 0.3

]
.

The target rank is (1, 1, 1, 1) and the best T-HOSVD approximation, denoted with
the overline symbol entails the error∥∥A−A∥∥ = 18.68700.

On the other hand the best ST-HOSVD approximation is realized by the proceeding
order p∗ = {1, 3, 2, 4}. Denoting the ST-HOSVD error with the hat symbol, the
associated approximation error is∥∥∥A− Âp∗∥∥∥ = 18.90896,

which is greater than the previous one.

Even if this result can discourage us from searching a relation between T-HOSVD
and ST-HOSVD approximation error, for a special case there is a proposition.

Proposition 2.2.43. Given n1, . . . , n3, r1, r2 ∈ N and the real field R, let A ∈ Rn1⊗
Rn2 ⊗Rn3 be a three order tensor. Fixed the target multilinear rank (1, r1, r2) and a
processing order p∗ = {1, 3, 2, 4}, we denote with AT the T-HOSVD approximation
and with Â the ST-HOSVD with proceeding order p∗ approximation. Then∥∥∥A− Â∥∥∥ ≤ ∥∥A−A∥∥
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Proof. We will denote with the hat symbol the projectors obtained with ST-HOSVD
and with the overline one the projectors from the T-HOSVD. As we have already
pointed out previously π̂1 = π1 because the first step of T-HOSVD and ST-HOSVD
is solving

arg min
π1

∥∥∥π⊥1 (A)
∥∥∥ .

The partial truncated core tensor C(1) = π̂1(A) = π1(A) is a matrix. So in the next
step of ST-HOSVD we define the second projector π̂2 = Û2Û

H
2 taking the first r1

vectors of the left orthogonal matrix U from SVD of π̂1(A). Comparing term by
term the first two elements of the summation of the error Equation 2.22 we get that∥∥π̂⊥1 (A)

∥∥2 =
∥∥π⊥1 (A)

∥∥2 and since Theorem 2.1.19
∥∥π̂⊥2 π̂1(A)

∥∥2 ≤ ∥∥π⊥2 π1(A)
∥∥2. In

the third and last step we define π̂3 = Û3Û
H
3 taking the first r2 vectors of the left

orthogonal matrix U from SVD of π̂2π̂1(A). However since π̂1(A) is a matrix, the r2
column vectors which compose the matrix Û3 are the the first r2 vectors of the right
orthogonal matrix V from the SVD of π̂1(A). Consequently π̂3π̂2π̂1(A) is the best
rank min{r1, r2} approximation of π̂1(A) and so∥∥∥π̂⊥3 π̂2π̂1(A)

∥∥∥2 ≤ ∥∥∥π⊥3 π2π1(A)
∥∥∥2 .

Collecting the previous equality and inequality we get the thesis, since Proposition
2.2.32.

Besides the presented results, mathematicians, physics, engineers and computer
scientists are still studying solutions to the LMLRA problem. In 2018 Jan Draisma,
Giorgio Ottaviani and Alicia Tocino made a step forward. They presented a gen-
eralisation of Schmidt, Mirsky, Eckhart, Young theorem for tensors, cf. [mate14].
Fixed a tensor in a Euclidean tensor space, they look for the critical points of the
distance function from the chosen tensor to the set of tensors of rank at most k.
They prove that for 2-order tensors critical rank-at-most-1 matrices correspond to
the singular pairs of the chosen order 2 matrix. Moreover they show that critical
rank-1 tensors form a linear subspace, which, under some conditions, contains also
the critical rank-at-most-k.
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Chapter 3

Loss of volume, loss of information

In this last chapter we will present the chosen operative way and the results
obtained.

3.1 Datasets and codes

Spectral images represent one of the possible applications of tensor theory. We
can store in a three order tensor rasters corresponding to different bands. Therefore
the first step of our discussion is collecting the data. From MOD13C2v006 and
MOD13A3v006, both sensed by MODIS, 1.1.1, and available at [res0; res00], we
select the RED, NIR rasters and the NASA computed NDVI, subsection 1.2.1.
MOD13C2v006 is a product characterized by 13 layers, each of which stores an
imagery of the Earth with different properties. Each raster is a matrix of 3600
rows and 7200 columns. The side of each pixel corresponds to 5600 m, which is the
spatial resolution. The imageries are monthly: they are obtained from the daily data
through NASA’s algorithms. We download the data in hdf format from January 2010
until December 2018.
MOD13A3v006 is a similar product with a higher spatial resolution. While each
image from the previous dataset covered the entire Earth’s surface, each one from
this second dataset covers just 1200× 1200 m2. We select the 20 components, called
granules, to compose an Europe’s map. We download in GEOTiff the granules from
RED, NIR bands and from the NDVI computed by the NASA, from June 2011 until
December 2018. Also in this case they are obtained by the NASA scientists from
daily data. The final dimension of most of the rasters is 4800 rows and 6000 columns.
We do not talk about every used test elements from MOD13A3v006 dataset, since
those of December 2016 and of December 2017 do not include all the 20 granules.
Moreover we remark that rasters of December 2012 and December 2015 have the
correct dimension, but they have respectively one and two missing area. Lastly
NASA stores the data in 16-bit signed integers.
The programming language used to perform all the computations is python, since
we want to follow the free and open source NASA’s policy. The next step is creating
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3-order tensors. Taking advantage of the GDAL dependencies for python, we simply
convert rasters into matrix, removing the metadata useless for our aims. Then we
store NDVI, RED and NIR into 3-order arrays.

Definition 3.1.1. Let TE be the set of all the tensor A ∈ Rn1 ⊗ Rn2 ⊗ R3 with
n1 = 4800 and n2 = 6000 such that

• A·,·,1 is the NDVI raster,

• A·,·,2 is the RED raster band,

• A·,·,3 is the NIR raster band

of Europe dataset for every month and for every year. The cardinality of TE is
nE = 91.
Similarly let TW be the set of all the tensor A ∈ Rm1 ⊗ Rm2 ⊗ R3 with m1 = 3600
and m2 = 7200 such that

• A·,·,1 is the NDVI raster,

• A·,·,2 is the RED raster band,

• A·,·,3 is the NIR raster band

of Earth dataset for every month and for every year. The cardinality of TW is
nW = 108.

Remark 3.1.2. Henceforth we will denote with R⊗E the tensor space Rn1⊗Rn2⊗R3,
where E = (n1, n2, 3), n1 = 4800 and n2 = 6000 and with R⊗W the tensor space
Rm1 ⊗ Rm2 ⊗ R3, where W = (m1,m2, 3), m1 = 3600 and m2 = 7200.

Lastly we code the high order singular value decomposition and the indexes com-
putation algorithms. To implement T-HOSVD and ST-HOSVD we need a python
library expressly developed to manage tensors. Moreover we also want that this
library to interact properly with NumPy the python most used library for numerical
computation, cf. [res1]. Therefore we choose TensorLy, cf. [res2]. This recently
developed library, firstly presented in 2016, wants to make tensor study and manip-
ulation easy and accessible. Besides their creators projected TensorLy to perfectly
match with other famous Python libraries, as NumPy, SciPy. They developed most
of the main tensor operations and related functions. To compute the singular value
decomposition of tensors flattening, the central step in T-HOSVD and ST-HOSVD
algorithm, we need a Python function able to manage huge arrays. This is not a
trivial task, since development of Python functions is left to singular initiative. We
decide to use svds function from SciPy sparse linear algebra function, cf. [res3].
This implementation of SVD takes advantage of matrix sparsity in performing the
matrix-vector multiplication. The final implementation of T-HOSVD is
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import numpy as np
import tensorly as tl
from tensorly import decomposition as decompose
from tensorly import tenalg as Tla
import scipy
from scipy.sparse.linalg import svds

def T_hosvd(T, rango, projector = Ture):
L = []
dim = T.shape
for i in range(len(dim)):

flat = tl.unfold(T,i)
res = svds(flat, k = rango[i])
L.append(np.transpose(res[0][0:dim[i], :]))

core = Tla.multi_mode_dot(T,L)
if projector:

P = [np.transpose(u) for u in L]
return [core,P]

return core

This function takes as input variable a tensor T and a list or a tuple, whose values
are the target multilinear rank components. Inside the T_hosvd we declare an empty
list, L, in which at the i-th step we store matrix U_i from the thin SVD of the i-th
flattening for every i ∈ {1, . . . , d}. The dim variable is a tuple containing the size
of tensor T. Then for each direction we compute the flattening and its SVD. After
the for loop, we get the core tensor with the multilinear product between a list of
matrices, our projectors, and the original tensor T. Notice that there is the option
projector, with True as default value, to return a list L containing the projectors
matrices together with the standard result, i.e. the core tensor.
On the other hand the ST-HOSVD implementation is

import numpy as np
import tensorly as tl
from tensorly import decomposition as decompose
from tensorly import tenalg as Tla
import scipy
from scipy.sparse.linalg import svds

def ST_hosvd(T, rango, projector = True):
dim = T.shape
core = T
if projector:

P=[]
for i in range(len(dim)):
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flat = tl.unfold(core,i)
res = svds(flat, k=rango[i])
core =

Tla.mode_dot(core,np.transpose(res[0][0:dim[i],:]),mode=i)↪→

if projector:
P.append(res[0][0:dim[i],:])

if projector:
return [core,P]

return core

The input arguments of ST-HOSVD and T-HOSVD implementations are the same.
The first difference with T_hosvd is the initial declaration of core tensor, set equal
to T. Next we highlight that only if the projector variable is True, we initialize an
empty list to store the projectors matrices. Another difference is the computation of
the core tensor inside the for loop with the component wise product between matrix
and tensor, fixed a certain direction. The basic output is still the final core tensor.
The last codes, we present, are used to compute the biodiversity index. Remind that
for every raster of size (m,n), fixed l the side of the moving window, the biodiversity
index is computed l×m× n times. In our case l = 11 and so we have to repeat the
computations 28512×104 and 31680×104 times for the World and the Europe maps
respectively. To speed up the entire work we decide to implement a parallel version
of the biodiversity index algorithm. When a computer executes a parallel functions
its cores perform independently different tasks at the same time. An example will
help us.

Example 3.1.3. Let A be an array of 10n elements, with n ∈ N and enough big. If
we want to compute and to save in another array the square value of each element
of A we can do:

B = []
for x in A:

y = x**2
B.append(y)

If we assume that each execution of the for loop body costs 1 time unite, the total
time to have the complete list B will be of 10n time unite. However if there are two
cores available on our machine, each core can do the operations inside the for loop
at the same time. For example one core can compute the square value of elements
in even position, the other the wanted value of elements in odd position. Therefore
the total time will be reduced to 10n

2 time units.

In our case we want that each core of the used machine works on different position
of the moving window. Consequently to implement this mechanism we needed a
parallel computing library, as Joblib, cf. [res4]. We chose Joblib since its ease
of use. To explain how we used the Joblib commands Parallel and delayed, we
present an example.
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Example 3.1.4. Reminding Example 3.1.3, we define a function which depends on
the for loop index.

def f(i, array = A):
y = A[i]**2
return y

The variable i is the index which will scroll A elements, while the array A is set as
default. Then to perform parallel computation we will call

from joblib import Parallel, delayed

B = (Parallel(n_jobs = 2)(delayed(f)(i) for i in range(0,len(A))))

Indeed it is sufficient to write a function, which takes as input a scrolling index
and the Joblib Parallel and delayed will distribute the steps on the available
cores. Other two used library are itertools, to create iterable elements and spatial
from SciPy, to compute the distance element wise for two matrix. The main Rao
computation code is

#### computation
import numpy as np
import scipy
from scipy import spatial
import itertools
#### parallelisation
import joblib
from joblib import Parallel, delayed
import multiprocessing

def raop(rw):
def raout (cl, rw = rw, rasterm = rasterm, missing = missing, w =

w, distance_m = distance_m):↪→

tw_labels, tw_values =
np.unique(rasterm[(rw-w):(rw+w+1),(cl-w):(cl+w+1)],
return_counts=True)

↪→

↪→

if len(np.where(tw_labels == missing)) != 0:
tw_values = np.delete( tw_values, np.where(tw_labels ==

missing))↪→

tw_labels = np.delete( tw_labels, np.where(tw_labels ==
missing))↪→

if len(tw_values) > 1:
d1 = spatial.distance.cdist(np.diag(tw_labels),

np.diag(tw_labels), distance_m)↪→

p = tw_values/np.sum(tw_values)
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p1 = np.zeros((len(tw_values),len(tw_values)))
comb = np.array([x[0]*x[1] for x in

list(itertools.combinations(p, 2))])↪→

p1[np.triu_indices(len(tw_values), k=1)] = comb
p1[np.tril_indices(len(tw_values), k=-1)] = comb
return ((np.sum(np.multiply(p1,d1))))

elif len(tw_values) == 1:
return (((0)))

else:
return ((missing))

Raout = Parallel(n_jobs = NcCores)(delayed(raout)(cl) for cl in
range(w,c-w))↪→

return (Raout)
out[w:(r-w), w:(c-w)] = (np.asarray(Parallel(n_jobs =

NcCores)(delayed(raop)(rw) for rw in
range(w,(r-w)))).reshape(r-2*w,c-2*w))

↪→

↪→

Since the moving window scrolls over rows and over columns, we define two par-
allelised functions one inside the others, raop whose variable is just the row index
and raout. This second function takes as variable the column index and has other
set parameters: rasterm the raster, rw the row index, missing a value used in the
raster when data are not present, w the window side and a function distance_m
to compute the distance between raster values. The first step is storing the values
and their frequencies of the raster area covered by the moving window in the arrays
tw_labels and tw_values respectively. Then we check if there is the missing value
in the considered area: if it is present, we remove it and its frequency from the
storing arrays. Next if there are at least two different elements in the tw_values
array, we compute their distance with the function spatial.distance.cdist and
save the result in the d1 matrix. In p we put the relative frequencies, obtained from
the absolute ones. We define a 0 matrix p1, with the same size of d1. We compute
and store in comb all the possible combination between different elements of vector
p. We assign these values to the upper and lower triangular part of the matrix p1.
Lastly we return the sum of the elements of the product matrix between d1 and p1.
Notice that the product matrix will coherently have diagonal null elements, since the
distance between a pixel value and itself is 0.
If there is just one element in vector tw_values, we return 0 since the difference
between a pixel value and itself is 0. Otherwise, if tw_values is an empty vector,
we return missing. Inside function raop we define function raout and we do the
first Parallel call. Outside it we do the second Parallel call. Notice that this
function is thought to compute Rao’s index when the moving window is completely
contained into the raster. When this condition is not satisfied, to speed up compu-
tation, there is a special implementation of Rao’s, available here [res5].
With a similar approach, we implemented Rényi’s index, whose core is

#### computation
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import numpy as np
import scipy
#### parallelisation
import joblib
from joblib import Parallel, delayed
import multiprocessing

def IndexOP (rw):
def IndexOut (cl, rw = rw, rasterm = rasterm, missing = missing, w

= w, alpha=alpha, base = base):↪→

tw_labels, tw_values =
np.unique(rasterm[(rw-w):(rw+w+1),(cl-w):(cl+w+1)],
return_counts=True)

↪→

↪→

if len(np.where(tw_labels == missing)[0]) != 0:
tw_values = np.delete( tw_values, np.where(tw_labels ==

missing))↪→

if len(tw_values) != 0:
p = tw_values/np.sum(tw_values)
if np.log(np.sum(p**alpha)) == 0:

return(0)
else:

return((1/(1-alpha)) * np.log(np.sum(p**alpha)) /
np.log(base))↪→

else:
return (missing)

Index_Out = Parallel(n_jobs = NcCores)(delayed(IndexOut)(cl) for
cl in range(w,c-w))↪→

return (Index_Out)
out[w:(r-w), w:(c-w)] = np.asarray(Parallel(n_jobs =

NcCores)(delayed(IndexOP)(rw) for rw in
range(w,r-w))).reshape(r-2*w,c-2*w)

↪→

↪→

Similarly we declare function IndexOP, with just row index as variable and inside
it function IndexOut. This one takes as parameters some equals to raout’s ones.
The variable proper of IndexOut are alpha, the Rényi’s parameter, and base, the
logarithm base. The code structure is similar to raout. We compute and store
the values, present inside the raster area covered by the moving window, and their
frequencies. We check and in case delete missing value and its frequency. If there is
still an element into tw_values, we compute the relative frequencies and return the
Rényi index. We test if the index final value is 0 and return 0 to avoid sign problem.
If tw_value is an empty vector, we return missing value. We do a first Parallel
call of IndexOut inside IndexOP and a second one of IndexOP outside it. Even in this
case the presented code will work only when the moving window is entirely contained
in the raster. To speed up the computations, we develop a special version of this
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code which works when the moving window is not fully contained. It is available
here [res5].

3.2 Approach and results

Since obtaining the biodiversity indexes takes long time and needs many re-
sources, we perform all the computation over the university of Trento cluster. The
indexes we estimate are Rao and Rényi, i.e. Rényi family index with α = 2, both
with window side equal to 11. We maintain the same window side on Europe’s and
on Earth’s images, since the different spatial resolutions lead to similar rasters di-
mensions.
The first step is computing both Rao and Rényi index over the NDVI raster, extrac-
ted from the loaded tensor, i.e. over (Akh)·,·,1 for every kh ∈ {1, . . . , nh} for every
h ∈ {E,W}.

Definition 3.2.1. Let Rh be the set of Rao index computed over (Akh)·,·,1 for every
kh ∈ {1, . . . , nh} for every h ∈ {E,W}. Similarly let Ih be the set of Rényi index
computed over (Akh)·,·,1 for every kh ∈ {1, . . . , nh} for every h ∈ {E,W}.
We call R original estiamtes for every R ∈ RE ∪RW ∪ IE ∪ IW .

We use the obtained images as comparison term. Then we compute also an NDVI
from the RED and NIR raster, using Definition 1.2.3, since the algorithm used by
NASA for NDVI creation is not public.

Definition 3.2.2. Let gE : R⊗E 7→ Mn1×n2(R) × Mn1×n2(R) and gW : R⊗W 7→
Mm1×m2(R)×Mm1×m2(R) be such that

gh(A) = (A·,·,2,A·,·,3)

for every A ∈ Th for every h ∈ {E,W}. Let M ∈ R be a default missing value and
let l : R× R 7→ R be a function such that

l(a, b) =

{
a−b
a+b if a+ b 6= 0

M if a+ b = 0

for every a, b ∈ R.
Let l : Mp×q(R) × Mp×q(R) 7→ Mp×q(R) be such that for every A,B ∈ Mp×q(R)
then l(A,B) = C such that Ci,j = l(Ai,j , Bi,j) for every i ∈ {1, . . . , p} for every
j ∈ {1, . . . , q}. Let fh = l ◦ gk be the function that associates to each tensor A ∈ Th
the NDVI raster obtained from (Akh)·,·,2 and (Akh)·,·,3 for every kh ∈ {1, . . . , nh} for
every h ∈ {E,W}. Then

T̃h = f(Th)

for every h ∈ {E,W}.
We call elements of Nh self-made NDVI images for every h ∈ {E,W}.
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Remark 3.2.3. Since for every NIR and RED band rasters have only non negative
elements, the second case of function l in the previous definition is verified when both
elements of NIR and RED rasters are zero. In that case we assign to NDVI the
default missing value, M = −3000.

Consequently we perform again index estimation over Nh elements for every h ∈
{E,W}.

Definition 3.2.4. Let R̃h be the set of Rao index computed over Akh ∈ Nh for every
kh ∈ {1, . . . , nh} for every h ∈ {E,W}. Similarly let Ĩh be the set of Rényi index
computed over Akh ∈ Nh for every kh ∈ {1, . . . , nh} for every h ∈ {E,W}.
We call R relative estiamtes for every R ∈ R̃E ∪ R̃W ∪ ĨE ∪ ĨW .

Remark 3.2.5. Henceforth we assume that elements of the same set pairs (Rh, R̃h)
and (Ih, Ĩh) are ordered equally for every i ∈ {E,W}.

Even now, we can present some comparison between these two types of estimates.
We calculate the error ‖Aj −Bj‖F for every Aj ∈ Ri and Bj ∈ R̃i for every j ∈
{1, . . . , ni} for every i ∈ {E,W}. Next we also compute the error per pixel dividing
the error by the number of pixels. Since we are working with huge matrices, this
type of distributed error is useful to understand how big is on average the error
made pointwise. In the following table we present some statistics, where e is the
error vector and ep is the error per pixel vector. Besides for every v ∈ Kn, we set

min v = min v1, . . . , vn and max v = max{v1, . . . , vn}.

Dataset E[e] E[ep] Var[e] Var[ep] min ep max ep

Europe 197877.819 0.0069 409993378560.6464 0.0005 0.0013 0.1777

World 1731817.3949 0.0668 687978783275.7339 0.001 0.0155 0.1678

Table 3.1: Rao index statistics for original and relative data.

We make on average a 0.6% error per pixel for Europe Rao estimation using
self-made NDVI instead of NASA NDVI, while the error is on average of 6% per
pixel when Rao is computed over Earth NDVIs. Both the unbiased variance are very
small, which means that errors are not very different from the mean. Notice that
also the minimum approximation error is greater for Earth than for Europe data.
We suppose that this is linked with the water surface greater in World rasters than
in Europe’s ones.
Similarly we calculate the error ‖Aj −Bj‖F for every Aj ∈ Ii and Bj ∈ Ĩi for every
j ∈ {1, . . . , ni} for every i ∈ {E,W}. With the same notation, introduced previously,
we presents some statistics for Rényi index.
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Dataset E[e] E[ep] Var[e] Var[ep] min ep max ep

Europe 132517.8038 0.0046 420678175017.4135 0.0005 0.0003 0.1777

World 782043.4085 0.0302 148701528527.3207 0.0002 0.0112 0.0688

Table 3.2: Rényi index statistics for original and relative data.

In this case the mean error per pixel for both the dataset is smaller than the
previous mean. We explain this remarking that Rényi index takes into account only
frequencies while Rao index considers both values and their frequencies. However in
this case variance in World error is smaller than in Europe, while in the Rao case
we have the opposite situation. Moreover we observe that the minimum and the
maximum approximation error in the World dataset for both the indexes is realised
by the same element, i.e. April 2018 and May 2014 respectively. This consideration
holds also for Europe dataset: the minimum error comes from April 2018 and the
maximum from December 2012.
The next steps of our analysis include the HOSVD. Before starting our approach
description, we have to highlight one limit of svds. It takes as additional parameter
k, which is the rank of the wanted approximation and which has to be strictly lower
than the rank of the given matrix. So if we had passed just a 3-order tensor such
that n3 = 2, for the third flattening we would have fixed k equal to 1, getting a
vector: too little for our aims. Therefore we decide to increase n3 up to 3, adding
another matrix to our tensor: in the first case we take twice RED band raster and
once NIR one, in the second case we take twice NIR band and once RED one.

Definition 3.2.6. Let gR,h : R⊗h 7→ R⊗h be the function that associate the tensor
B such that

B·,·,1 = B·,·,2 = A·,·,2 and B·,·,3 = A·,·,3,

to each tensor A ∈ Th for every h ∈ {E,W}. Then

TR,h = gR,h(Th)

for every h ∈ {E,W}.
Similarly let gN,h : R⊗h 7→ R⊗h be the function that associates the tensor B such
that

B·,·,1 = B·,·,3 = A·,·,3 and B·,·,2 = A·,·,2,

to each tensor A ∈ Th for every h ∈ {E,W}. Then

TN,h = gN,h(Th)

for every h ∈ {E,W},

To compute T-HOSVD and ST-HOSVD, we decide five multilinear target ranks.
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Definition 3.2.7. Let R = {10, 50, 100, 500, 1000} be a set with the given order
fixed, then the target multilinear rank we choose are

rj = (ij , ij , 2)

for every ij ∈ R for every j ∈ {1, . . . , 5}. Let Tk,h,j be the set of T-HOSVD approx-
imation at multilinear rank rj of tensors from the set Tk,h for every h ∈ {E,W},
for every k ∈ {N,R} and for every j ∈ {1, . . . , 5}. Similarly let Sk,h,j be the set of
ST-HOSVD approximation.

Before presenting results related to indexes computation, we have some data
about storage memory use. Since it depends on the core tensor and on the projectors
dimension, which are equal for T-HOSVD and ST-HOSVD, we report only a table
for each dataset. For each tensor A ∈ Tk,W the ratio between the memory used for
storing the core tensor and the projectors over the memory used for storing A is the
same, for every k ∈ {N,R}. For tensors of Tk,E it holds the same, except for those
elements composed by a lower number of granules, for every k ∈ {N,R}. Since they
are 2 over 91, we neglect them and in the table we present the ratios of memory
usage for each rank approximation. We call these ratios absolute compression ratios,
because they have as denominator the memory used to store two time RED band
and once NIR band, or vice-versa. In the following table they are present as Abs. R,
when RED band raster is repeated and as Abs. N, in the other case. Beside we list
also a relative compression ratio, where the denominator is the amount of memory
necessary to store once RED and once NIR band. In the table it is Rel. Moreover
here and all along the thesis for simplicity we write as rank only the significant
components of the multilinear rank, i.e. ij for every ij ∈ R for every j ∈ {1, . . . , 5}.

Rank
Europe Earth

Rel Abs. R Abs. N Rel Abs. R Abs. N

10 0.0019 0.0013 0.0013 0.0021 0.0014 0.0014

50 0.0095 0.0063 0.0063 0.0105 0.007 0.007

100 0.0191 0.0127 0.0127 0.0212 0.0141 0.0141

500 0.1024 0.0683 0.0683 0.1138 0.0759 0.0759

1000 0.2222 0.1481 0.1481 0.2469 0.1646 0.1646

Table 3.3: Rate of compression.

Notice that even with the greater component wise target multilinear rank, we
need just a small percentage of memory with respect the one used for storing the
entire tensor. In addiction to this, even the relative ratio at the highest multilinear
rank present a significant saving in memory use.
In order to not get lost during the presentation with the numerous indexes used, we
will give a general idea. After having generated new tensors and having approximated
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them, we we calculate new NDVIs through function fh defined in 3.2.2 applied on
Tk,h,j∪Sk,h,j for every h ∈ {E,W}, for every k ∈ {N,R} and for every j ∈ {1, . . . , 5}.
Over them we calculate biodiversity index. Lastly we measure the difference in
estimating biodiversity from approximated NDVI and NASA or self-made NDVI.

Definition 3.2.8. Let Nk,h,T,j = fh(Tk,h,R,j) and let Nk,h,S,j = fh(Sk,h,R,j) every
j ∈ {1, . . . , 5} and for every h ∈ {E,W}. We call elements of Nk,h,T,j ∪ Nk,h,S,j
approximated NDVIs.

To describe hour work in a clearer way, we present the discussion for Rényi and
Rao index in different subsections.

3.2.1 Rényi Index

The next step is computing Rényi index over approximated NDVIs

Definition 3.2.9. Let IR,h,k,j be the set of Rényi index computed over elements
of NR,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and for every j ∈ {1, . . . , 5}.
We decide to call these ij-approximated estimates for every ij ∈ R and for every
j ∈ {1, . . . , 5}.

Remark 3.2.10. Notice that we have 4 indexes for approximated estimates set:

1st index indicates the repeated matrix in the starting tensor R for RED and N
for NIR;

2nd index the belonging dataset, E for Europe and W for Earth;

3rd index the approximation algorithm, T for T-HOSVD and S for ST-HOSVD;

4th index is associated with the target multilinear rank.

The last step is computing the error with respect to the original estimates, i.e.∥∥∥Ak − Ck,j∥∥∥
for every Ak ∈ Ih and for every Ch,j ∈ IR,h,T,j ∪ IR,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}. Moreover we compute the error
with respect to relative estimates, i.e.∥∥∥Bk − Ck,j∥∥∥
for every Bk ∈ Ĩh and for every Ch,j ∈ IR,h,T,j ∪ IR,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}.
Now we present some statistics for the errors per pixel with respect to original estim-
ates, stored in vector epO and relative estimates, in vector epR for Europe dataset,
for both the decomposition techniques for each target multilinear rank. In the follow-
ing table we report as rank only the significant component of the multilinear rank,
for simplicity.
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Remark 3.2.11. To simplify the discussion henceforth and all along the thesis the
ij-original error will be the error between original estimate and ij-approximated es-
timate, while the ij-relative error will be the error between relative estimate and
ij-approximated estimate for every ij ∈ R.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.1576 0.0914 0.0801 0.0807 0.0766 0.1597 0.0917 0.0803 0.0798 0.0755

Var[epO] 0.0003 0.0002 0.0002 0.0013 0.0013 0.0003 0.0002 0.0002 0.0013 0.0013

E[epR] 0.1572 0.0913 0.0807 0.0821 0.079 0.1593 0.0918 0.0811 0.0815 0.0779

Var[epR] 0.0003 0.0002 0.0003 0.0014 0.0014 0.0003 0.0002 0.0003 0.0014 0.0014

min epO 0.1164 0.0641 0.0537 0.0466 0.0383 0.1164 0.0646 0.0542 0.0459 0.0367

min epR 0.1164 0.0641 0.0537 0.0466 0.0383 0.1164 0.0646 0.0542 0.0459 0.0367

max epO 0.1864 0.1377 0.1136 0.194 0.1999 0.1931 0.1371 0.1104 0.1932 0.199

max epR 0.1864 0.147 0.1618 0.194 0.1999 0.1931 0.1479 0.1679 0.1932 0.199

Table 3.4: Statistics for Rényi index over N ∈ NR,E,t,j .

Notice that ST-HOSVD original and relative error per pixel is lower than T-
HOSVD original and relative error per pixel, when the first two components of target
multilinear rank are greater or equal than 500. The variance of both errors is quite
low, even if it increases in the last three multilinear ranks. Moreover we underline
that the minimum relative error and the minimum original error are equal up to the
forth decimal digit. They also decrease, when the components of multilinear ranks
increase. On the other hand the maximum of relative errors and the maximum
of original errors do not coincide. Beside, they increase significantly in the forth
and fifth approximation. Finally we notice that the average relative error per pixel
is frequently slightly greater than the original one. For T-HOSVD this inequality
between original and relative error average happens from the third approximation,
while for the ST-HOSVD from the second one. The difference seems to grow for
increasing multilinear rank components. This could appear a bit strange, since we
expect the contrary. However we have to remark that Rényi index takes in account
only raster values frequencies, neglecting the values themselves. In addiction from the
complete data, we observe that the relative error of elements with missing granules,
tensors of December 2012 and December 2015, is more than 3 times the original
error.
Next we list statistics about the Earth dataset. Similarly for each target multilinear
rank in vector epO there are the errors per pixel with respect to original Rényi
estimates, while in epR with respect to relative estimates.
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T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.1376 0.0943 0.0875 0.0626 0.0584 0.1383 0.0946 0.0876 0.0625 0.058

Var[epO] 0.0001 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001

E[epR] 0.1358 0.091 0.0846 0.0545 0.0491 0.1365 0.0912 0.0847 0.0545 0.0485

Var[epR] 0.0001 0.0001 0.0002 0.0002 0.0 0.0001 0.0001 0.0002 0.0002 0.0

min epO 0.1156 0.0758 0.0668 0.048 0.0471 0.1156 0.076 0.0672 0.0483 0.0468

min epR 0.1155 0.0748 0.0655 0.0421 0.0414 0.1155 0.075 0.0658 0.0421 0.0411

max epO 0.1599 0.1182 0.1255 0.0967 0.0813 0.1601 0.1185 0.1253 0.0973 0.0811

max epR 0.155 0.1134 0.1263 0.0968 0.0744 0.1551 0.1138 0.126 0.0974 0.0731

Table 3.5: Statistics for Rényi index over N ∈ NR,W,t,j .

We remark that even in this case on average ST-HOSVD technique leads to lower
original and relative error on average than T-HOSVD, for the last two and for the
last one target multilinear rank respectively. Moreover we observe that relative error
mean is slightly lower than original one, as we expected. Minimum and maximum of
both errors decrease for increasing multilinear rank components. Certainly the most
stunning value is the variance of relative error per pixel at the last approximation.
For both T-HOSVD and ST-HOSVD it is lower than 10−4.
We include the image associated to Rényi index in the five approximations for the
Europe worst case and the Earth beast case, both from ST-HOSVD approximation
technique.

Example 3.2.12. Let’s observe the Rényi index computed over Europe NDVI of
February 2013, in Figure 3.1. We immediately notice that biodiversity seems to be
quite high, near 4.5 almost everywhere in Europe. However as remarked in [eco33],
Rényi index tends to overestimate biodiversity. Besides we underline that Rényi
index computed over self-made NDVI does not differ much from its computation
over NASA NDVI.
Next we have in Figure 3.2a the same index computed over self-made NDVI and
the approximated Rényi estimates at different multilinear ranks. We can notice that
when the first two components of the multilinear rank grow, in the Rényi estimation
some new noising elements appear, leading to high errors. We believe that this type
of phenomenon deserves further analysis. However in the internal land of Europe, the
biodiversity estimation is quite close to the relative and original one, for multilinear
rank components strictly greater than 100.

In the next example we will consider the element of Earth dataset, which realises
the minimum error.

Example 3.2.13. Firstly we show in Figure 3.3 the Rényi estimate over NASA
NDVI of October 2017. As we said in the Example 3.2.12 Rényi index provides
quite high biodiversity values. Indeed also in this case there are many Earth areas
with a biodiversity value close to 4.5. Then we present the same index over self-
made and approximated NDVI. Even if the small printing dimensions reduce the
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Figure 3.1: Rényi index computed over NASA NDVI of February 2013.

detail precision, our eyes do not perceive at first glance much difference between
the last three index approximations and the index of Figure 3.3. However with
a closer observation, we notice that islands of the Pacific ocean disappear in first
approximation and they partially reappear in the last two images. We therefore
conclude that the original and relative error is in this case strongly linked with these
missing territories.

The next step in our discussions is computing Rényi index over approximated
NDVI of NN,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and j ∈ {1, . . . , 5}.

Definition 3.2.14. Let IN,h,t,j be the set of Rényi index computed over elements
of NN,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and for every j ∈ {1, . . . , 5}.
We decide to call these ij-approximated estimates for every ij ∈ R and for every
j ∈ {1, . . . , 5}.

As before, we compute the error with respect to the original estimates, i.e.∥∥∥Ak − Ck,j∥∥∥
for every Ak ∈ Ih and for every Ch,j ∈ IN,h,T,j ∪ IN,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}. Moreover we compute the error
with respect to relative estimates, i.e.∥∥∥Bk − Ck,j∥∥∥
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(a) Relative approximation (b) Component rank 10 compression

(c) Component rank 50 compression (d) Component rank 100 compres-
sion

(e) Component rank 500 compres-
sion

(f) Component rank 1000 compres-
sion

Figure 3.2: Approximation of Rényi index for February 2013, from NDVI of NR,E,S,j∪
NE .
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Figure 3.3: Rényi index computed over NASA NDVI of October 2017.

(a) Relative approximation (b) Component rank 10 compression

(c) Component rank 50 compression (d) Component rank 100 compression

(e) Component rank 500 compression (f) Component rank 1000 compression

Figure 3.4: Approximation of Rényi index for October 2017, from NDVI of NR,W,S,j∪
NW .
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for every Bk ∈ Ĩh and for every Ch,j ∈ IN,h,T,j ∪ IN,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}.
Lastly we report some statistics about ij-original and ij-relative errors per pixel,
stored in vector epO and epR for each ij ∈ R. Firstly a table for Europe related
data.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.1569 0.09 0.0782 0.0794 0.076 0.1586 0.0903 0.0783 0.0787 0.0751

Var[epO] 0.0003 0.0002 0.0002 0.0013 0.0013 0.0003 0.0002 0.0002 0.0013 0.0013

E[epR] 0.1563 0.0894 0.0782 0.0806 0.0783 0.158 0.0897 0.0785 0.08 0.0775

Var[epR] 0.0003 0.0002 0.0002 0.0014 0.0015 0.0004 0.0002 0.0002 0.0015 0.0014

min epO 0.1128 0.0623 0.0518 0.0449 0.0436 0.1143 0.0625 0.0521 0.0438 0.0428

min epR 0.1128 0.0623 0.0518 0.0449 0.0436 0.1143 0.0625 0.0521 0.0438 0.0428

max epO 0.1827 0.1462 0.1275 0.1936 0.1991 0.1855 0.1457 0.1222 0.1932 0.1988

max epR 0.1827 0.1363 0.1484 0.1936 0.1991 0.1855 0.1373 0.1528 0.1932 0.1988

Table 3.6: Statistics for Rényi index over N ∈ NN,E,t,js.

Almost every consideration for statistics of approximated estimates of IR,E,t,j for
every t ∈ {T, S} and for every j ∈ {1, . . . , 5} holds also in this case. However we can
notice that on average the 100 relative and original error are lower that 500 one, but
this is not true anymore for 1000 relative and original. Moreover when the first two
multilinear rank components are strictly smaller that 500, T-HOSVD relative and
original errors are lower than ST-HOSVD. For the statistics over IR,E,t,j elements,
this consideration holds only for relative error at the third multilinear rank. The
remarks about not full granules elements are true also in this case. We underline
that at each multilinear rank both the original and the relative errors on average are
smaller in this second case, i.e. applying the procedure to tensors where the NIR
band raster is repeated.
Lastly some statistical aspects about Earth approximated estimates. As previously,
we list a table with mean, variance, min and max for ij-original and ij-relative errors
per pixel, stored respectively in vector epO and epR for each ij ∈ R.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.1351 0.0915 0.084 0.0601 0.0556 0.1355 0.0917 0.0842 0.0601 0.0553

Var[epO] 0.0001 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001

E[epR] 0.1334 0.0879 0.0807 0.052 0.046 0.1338 0.0882 0.0809 0.052 0.0455

Var[epR] 0.0001 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0

min epO 0.1119 0.0727 0.0638 0.0443 0.0424 0.112 0.0728 0.0641 0.0445 0.0422

min epR 0.1114 0.0715 0.0623 0.0385 0.0382 0.1115 0.0716 0.0628 0.0387 0.0379

max epO 0.1564 0.1154 0.121 0.0963 0.0792 0.1574 0.116 0.1209 0.0964 0.0791

max epR 0.1536 0.1098 0.1218 0.0965 0.0731 0.1536 0.1099 0.1217 0.0966 0.0719

Table 3.7: Statistics for Rényi index over N ∈ NN,W,t,j .
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Also in this case the considerations presented for IR,W,t,j error statistics hold. We
simply remark that we find again variance lower than 10−4 for 1000-relative error of
ST-HOSVD. Moreover also in this case ST-HOSVD is convenient only when the first
two multilinear ranks components are greater than 500. Lastly original and relative
error on average are again smaller in this second case, i.e. when we apply our method
to tensors where NIR band is repeated.
We will present briefly the Rényi index image over Europe NDVI of February 2013
and over Earth NDVI of October 2017, obtained starting from the correspondent
tensors of TN,h for h ∈ {E,W}.

Example 3.2.15. In example 3.2.12 we presented the Rényi index image, which
realises the highest original and relative error, starting from RED repeated band.
Here we have the image of Rényi index for the same element, with approximation
obtained from NIR band repeated. We remark that also starting from twice NIR
and once RED band tensor element of February 2013 realises the highest original
and relative error. Again we observe an increasing presence of noise in the north
Europe area for growing multilinear rank components.

Example 3.2.16. Similarly we display approximation of Rényi index for Earth ele-
ment of October 2017, obtained from tensors where is repeated twice the NIR band.
As in Example 3.2.12 we underline that the number of detected territories in the
Pacific ocean grows when the first two multilinear rank components grow. Moreover
comparing Figure 3.4f and Figure 3.6e, we notice that the amount of Pacific island
present is greater in the second one. Indeed this is the element which minimises the
original error also in this second proceeding way. Therefore also in this case we can
affirm that choosing a starting tensor with repeated NIR band is more convenient
that starting with repeated RED band.
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(a) Component rank 10 compression (b) Component rank 50 compression

(c) Component rank 100 compres-
sion

(d) Component rank 500 compres-
sion

(e) Component rank 1000 compres-
sion
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Figure 3.5: Approximation of Rényi index for February 2013, from NDVI of NR,E,S,j .
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(a) Component rank 10 compression (b) Component rank 50 compression

(c) Component rank 100 compression (d) Component rank 500 compression

(e) Component rank 1000 compression
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Figure 3.6: Approximation of Rényi index for October 2017, from NDVI of NN,W,S,j .
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3.2.2 Rao index

Now we compute Rao index over approximated NDVIs.

Definition 3.2.17. Let RR,h,k,j be the set of Rao index computed over elements of
NR,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and for every j ∈ {1, . . . , 5}. We
call these ij-approximated estimates for every ij ∈ R and for every j ∈ {1, . . . , 5}.

As we did previously, we compute the error with respect to the original estimates,
i.e. ∥∥∥Ak − Ck,j∥∥∥
for every Ak ∈ Rh and for every Ch,j ∈ RR,h,T,j ∪RR,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}. Moreover we compute the error
with respect to relative estimates, i.e.∥∥∥Bk − Ck,j∥∥∥
for every Bk ∈ R̃h and for every Ch,j ∈ RR,h,T,j ∪RR,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}.
To describe our results we report some statistics about ij-original and ij-relative error
per pixel, stored in vector epO and epR for each ij ∈ R. Firstly we list information
for Europe related data.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.6419 0.3621 0.2944 0.2059 0.1922 0.6328 0.3604 0.293 0.2081 0.1951

Var[epO] 0.0044 0.0012 0.001 0.0031 0.003 0.0038 0.0011 0.001 0.003 0.003

E[epR] 0.6424 0.3633 0.2961 0.2083 0.1953 0.6333 0.3615 0.2946 0.2104 0.1982

Var[epR] 0.0043 0.0013 0.0013 0.0038 0.0045 0.0037 0.0013 0.0013 0.0038 0.0045

min epO 0.4819 0.274 0.2194 0.1306 0.1128 0.4825 0.2724 0.2185 0.1326 0.1144

min epR 0.4819 0.274 0.2193 0.1306 0.1127 0.4825 0.2724 0.2185 0.1326 0.1144

max epO 0.7559 0.4081 0.3591 0.3858 0.3894 0.7246 0.4065 0.3722 0.3871 0.3917

max epR 0.7558 0.465 0.4659 0.4486 0.5599 0.7246 0.4746 0.4734 0.4742 0.5618

Table 3.8: Statistics for Rao index over N ∈ NR,E,t,j .

The most evident aspect is the high mean of both original and relative error made,
even when the components of multilinear rank grow. Indeed this average is close to
a 20% of error per pixel. If we compare it with the average error per pixel made for
Rényi index, we could think that in this case HOSVD is not performant. However
we want to remark two critical aspects: firstly Rao index takes into account also the
values of NDVI, not only their frequencies. Next we remind that at multilinear rank
r5 we are keeping nearly 15% of the total information, as in Table 3.3. Therefore
even if results on average are not as good as in Rényi case, we do not exclude the
power of this method for Rao index computation. Besides in the best case we have
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both original and relative error per pixel near to 11%, which is appreciable, as we
will see. Lastly we remark an interesting and unexpected twist. If in the previous
analysis T-HOSVD performed better when multilinear rank components were small
with respect to ST-HOSVD, in the present case T-HOSVD provides better result
than the other algorithm when the first two multilinear rank components are greater
that 500. Lastly we highlight that also in this case the relative error is on average
greater than the original one. Even in this case this phenomenon is at least in part
linked to the two incomplete elements, December 2012 and 2015. Indeed in this case
the relative error slightly less than twice the original error.
Now we present some statistics for the original and relative errors of Rao estimates
for Earth dataset. As before in the following table epO is a vector with the errors per
pixel computed with respect to original estimates, while in epR we store the errors
per pixel with respect to relative estimates.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.5442 0.3476 0.2949 0.1845 0.1735 0.5416 0.3467 0.2945 0.1851 0.1752

Var[epO] 0.0021 0.0007 0.0007 0.0004 0.0002 0.0018 0.0007 0.0007 0.0004 0.0002

E[epR] 0.5425 0.3445 0.2917 0.175 0.1628 0.54 0.3436 0.2913 0.1756 0.1646

Var[epR] 0.0019 0.0006 0.0006 0.0003 0.0001 0.0017 0.0005 0.0006 0.0003 0.0001

min epO 0.4614 0.2943 0.2472 0.1551 0.1523 0.4613 0.294 0.2475 0.1555 0.1539

min epR 0.4625 0.2952 0.2473 0.1509 0.1454 0.4623 0.295 0.2473 0.1513 0.1473

max epO 0.613 0.3992 0.3498 0.2442 0.2295 0.5991 0.3994 0.3497 0.2435 0.2306

max epR 0.6124 0.3859 0.3512 0.2396 0.1895 0.5971 0.3834 0.3511 0.2387 0.1926

Table 3.9: Statistics for Rao index over N ∈ NR,W,t,j .

We immediately notice that even with the greatest multilinear rank components,
the average original and relative error per pixel is quite high if compared with the
ones in Rényi case. We again remark that 16% error per pixel on average has been
obtained using only 16.4% of the total information. However we underline that even
in the best case the relative error per pixel is 14.5%, which is quite enough if com-
pared with the minimum error per pixel in the Europe previous case. Besides we
notice that the relative error per pixel is slightly lower that the original ones as in the
previous Earth case. As before we have that when the first two components of the
multilinear rank are lower than 500, ST-HOSVD techniques leads to better results
than T-HOSVD. Moreover as in the previous case the variance decreases when the
first two multilinear rank components grow.

Before moving to the analysis of error related to Rao index over NN,h,p,j for every
h ∈ {E,W}, for every p ∈ {T, S} and for every j ∈ {1, . . . , 5}, we show the best
case for Rao index for Europe and the worst case for Earth dataset in the following
examples. In both the case we use as approximation technique T-HOSVD.
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Example 3.2.18. Let’s observe the Rao index computed over Europe NDVI of
December 2014, in Figure 3.1.

2

1

0

Figure 3.7: Rao index computed over NASA NDVI of December 2014.

We immediately notice that biodiversity is much lower than in the Rényi case,
3.2.12. Besides we underline that even in this case Rao index computed over self-
made NDVIs is enough close to its computation over NASA NDVI. Lastly we high-
light that in this particular NDVI element the north Europe area is entirely set to
missing values, which are shown with white colour. Therefore we can assume that
the error is the minimum since this peculiarity.
Next we have in Figure 3.8a the same index computed over self-made NDVI and
the approximated Rao estimated at different multilinear rank. It is significant that
it is hard to distinguish the Rao index computed over NASA NDVI from the ones
computed over the forth and the fifth approximated NDVI.

Next we analyse the worst case of Rao index for the Earth dataset.

Example 3.2.19. Firstly in Figure 3.9 we present Rao index over NASA NDVI of
May 2014. As in the Europe case, biodiversity estimated by Rao index has lower
values. In the tropical regions for example we have the highest values, which are close
to 2. Moreover there are some areas as the Sahara desert which present extremely
low biodiversity values.
Next we show in Figure 3.10 the Rao index computed over self-made and approx-
imated NDVIs. It is clear observing the approximated Rao pictures and index of
3.9 that the high error is linked with the overestimation of biodiversity in the North
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(a) Relative approximation (b) Component rank 10 compression

(c) Component rank 50 compression (d) Component rank 100 compres-
sion

(e) Component rank 500 compres-
sion

(f) Component rank 1000 compres-
sion

Figure 3.8: Approximation of Rao index for December 2014, from NDVI of NR,E,S,j∪
NE .
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Figure 3.9: Rao index computed over NASA NDVI of December 2014.

(a) Relative approximation (b) Component rank 10 compression

(c) Component rank 50 compression (d) Component rank 100 compression

(e) Component rank 500 compression (f) Component rank 1000 compression

Figure 3.10: Approximation of Rao index for May 2014, from NDVI of NR,W,S,j∪NW .
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pole area. Indeed it is a remarkable phenomenon in the first four approximations. In
Figure 3.10f it tends to decrease, but it is still appreciable. Besides also the majority
of the Pacific ocean islands are missing in all the approximations. These regions were
probably related to error also in Example 3.2.13.

As before, the following step is computing Rao index over approximated NDVI
of NN,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and j ∈ {1, . . . , 5}.

Definition 3.2.20. Let RN,h,t,j be the set of Rao index computed over elements
of NN,h,t,j for every h ∈ {E,W}, for every t ∈ {T, S} and for every j ∈ {1, . . . , 5}.
We decide to call these ij-approximated estimates for every ij ∈ R and for every
j ∈ {1, . . . , 5}.

Then we compute the error with respect to the original estimates, i.e.∥∥∥Ak − Ck,j∥∥∥
for every Ak ∈ Rh and for every Ch,j ∈ RN,h,T,j ∪RN,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}. Moreover we compute the error
with respect to relative estimates, i.e.∥∥∥Bk − Ck,j∥∥∥
for every Bk ∈ R̃h and for every Ch,j ∈ RN,h,T,j ∪RN,h,S,j , for every k ∈ {1, . . . , nh},
for every j ∈ {1, . . . , 5} and for every h ∈ {E,W}.
In conclusion we report some statistics about the original and the relative errors per
pixel, stored respectively in vector epO and epR for the Europe dataset.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.6392 0.3641 0.2962 0.2094 0.1969 0.6332 0.3632 0.2953 0.2111 0.1991

Var[epO] 0.0049 0.0012 0.001 0.003 0.0029 0.0044 0.0012 0.0009 0.0029 0.0029

E[epR] 0.6396 0.3647 0.2974 0.2115 0.1999 0.6335 0.3638 0.2964 0.2131 0.2021

Var[epR] 0.0048 0.0013 0.0011 0.0036 0.0043 0.0044 0.0013 0.0011 0.0035 0.0042

min epO 0.4801 0.2741 0.2204 0.1357 0.1246 0.4777 0.2739 0.2202 0.1378 0.1269

min epR 0.4801 0.2741 0.2204 0.1357 0.1246 0.4778 0.2739 0.2202 0.1377 0.1269

max epO 0.7505 0.4167 0.3497 0.3933 0.3953 0.7403 0.4155 0.3491 0.3946 0.3949

max epR 0.7504 0.4444 0.4259 0.4487 0.5458 0.7402 0.4506 0.4193 0.4472 0.547

Table 3.10: Statistics for Rao index over N ∈ NN,E,t,j .

Comparing Table 3.8 and 3.10, we notice that the average original and relative
error per pixel are greater in the second case. In other words, starting from a tensor
with repeated NIR band is not convenient for computing Rao index over Europe
elements. Besides we underline that the minimum relative and original error are
realised when the starting tensor has RED band repeated. We can not affirm nothing
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about the maximum original and relative error, since for ij ∈ {10, 100, 1000} it is
lower when the repeated band is the NIR, while for ij ∈ {10, 100, 1000} when it is
repeated RED band. Lastly we highlight as always for the Europe dataset that the
average original error is lower than the relative one. As in the repeated RED case, we
remark that ST-HOSVD is convenient when the first two components of multilinear
are strictly lower than 500, otherwise T-HOSVD provides better results.
Then we present the final statistics fro original and relative errors of Rao estimates
for Earth dataset. As always in vector epO and in epR are respectively stored the
original and relative errors per pixel.

T-HOSVD ST-HOSVD

Rank 10 50 100 500 1000 10 50 100 500 1000

E[epO] 0.5366 0.3419 0.2869 0.1754 0.1636 0.5353 0.3417 0.287 0.1761 0.1651

Var[epO] 0.0023 0.0008 0.0007 0.0005 0.0003 0.0022 0.0008 0.0007 0.0005 0.0003

E[epR] 0.535 0.3389 0.2835 0.1657 0.1525 0.5337 0.3387 0.2836 0.1664 0.1541

Var[epR] 0.0021 0.0006 0.0006 0.0003 0.0001 0.002 0.0006 0.0006 0.0003 0.0001

min epO 0.4481 0.2873 0.2385 0.1431 0.1357 0.4487 0.2881 0.2394 0.1437 0.1376

min epR 0.4486 0.2885 0.2385 0.1382 0.1331 0.4483 0.2887 0.2394 0.1391 0.135

max epO 0.6063 0.3887 0.3458 0.2352 0.226 0.6006 0.389 0.3466 0.2352 0.2267

max epR 0.6057 0.375 0.3478 0.2307 0.1746 0.5997 0.3743 0.3487 0.2314 0.1768

Table 3.11: Statistics for Rao index over N ∈ NN,W,t,j .

In this case comparing Table 3.9 and 3.11, we notice that starting tensors with
repeated NIR band provides on average better results. Indeed for both the decom-
position techniques at the fifth approximation the average original and relative error
per pixel is around 17.5% in the first case and 16.5% in the second one. This 1%
difference between the RED and NIR case is present also in the minimum and max-
imum relative and original error per pixel for both the decomposition techniques.
Besides we underline that also in this case ST-HOSVD is convenient when the first
two multilinear components are lower than 100, otherwise T-HOSVD is preferable.
In conclusion to these analysis we want to empathise that an average error of 16.5%
per pixel is not much, if we remind that we use only 16.4% of the total information
available.
Lastly as before, we display the Rao index computed for December 2014 and May
2014, starting from tensors with repeated NIR bands.

Example 3.2.21. Firstly we remark that December 2014 realises the minimum
original and relative error, also starting from tensors with repeated NIR band. In
Figure 3.11 there are approximated Rao estimates at different multilinear rank, for
this NIR repeated case. As before, our eyes hardly perceive differences between
Rao computed over NASA or self-made NDVI and over the last three approximated
NDVIs.

Example 3.2.22. Firstly we remark that May 2014 do not realise the minimum
original and relative error starting from tensors with repeated NIR band. Therefore
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(a) Component rank 10 compression (b) Component rank 50 compression

(c) Component rank 100 compres-
sion

(d) Component rank 500 compres-
sion

(e) Component rank 1000 compres-
sion
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Figure 3.11: Approximation of Rao index for December 2014, from NDVI of NN,E,S,j .
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these are not the worst approximations in the Earth dataset, in this second case In
Figure 3.12 there are approximated Rao estimates at different multilinear rank, for
this NIR repeated case. As in Figure 3.10 the problematic areas are the North pole
and the Pacific ocean. Indeed we notice that there is a biodiversity overestimation
in the Arctic regions, which decreases for increasing multilinear rank components.
Moreover even in the fifth approximation there are missing island in the Pacific ocean.
However we can not easily notice much difference with respect to Figure 3.10.

3.3 Conclusion

We have shown that the presented approach is extremely convenient for Rényi
index estimation to save storage memory. As reported in Tables 3.4,3.6, 3.5 and 3.7
the average error per pixel is around 5.5% for Earth dataset and is close to 7.6%
for the Europe’s one when using respectively 16.4% and 14.8% of the total tensor
information. Moreover we have seen that starting from tensor with repeated NIR
bands is more convenient than with RED repeated, in the Rényi case. For Rao case
starting with twice NIR rasters is more convenient only for Earth dataset. Lastly we
have remarked that in Rényi case T-HOSVD makes on biodiversity estimation lower
error than ST-HOSVD with the first two multilinear rank components are relatively
low.
In the Rao case we face greater on average original and relative error per pixel. In-
deed in Tables 3.8 and 3.9 we have an average error per pixel close to 19.5% and
17% for Europe and for Earth dataset respectively. In this case we have noticed that
the roles of T-HOSVD and ST-HOSVD are inverted. Indeed T-HOSVD makes on
biodiversity estimation lower error than ST-HOSVD with the first two multilinear
rank components are relatively great.
In conclusion we believe that the presented work might help ecologists in their re-
mote sensed plant biodiversity estimation. Indeed fixed a certain accuracy, they can
compress through T-HOSVD and ST-HOSVD the tensors with NIR and RED bands,
to save storage memory and at the same time computing with fixed tolerance the
biodiversity estimates.
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(a) Component rank 10 compression (b) Component rank 50 compression

(c) Component rank 100 compression (d) Component rank 500 compression

(e) Component rank 1000 compression
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Figure 3.12: Approximation of Rao index for May 2014, from NDVI of NN,W,S,j .
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