

## Numerical linear algebra and data analysis in large dimensions using tensor format Ph.D. defence

Centre Inria of the University of Bordeaux, Talence, 09-12-2022

Martina Iannacito

Supervised by O. Coulaud and L. Giraud

Concace - Inria joint team with Airbus Central R&T and Cerfacs

#### The context

Different disciplines as physics, computer science, chemistry... relay on numerical simulations to study

- Stochastic equations
- Uncertainty quantification
   problems
- Quantum and vibration chemistry
- Optimization
- Machine learning



#### The context

Different disciplines as physics, computer science, chemistry... relay on numerical simulations to study

- Stochastic equations
- Uncertainty quantification
   problems
- Quantum and vibration chemistry
- Optimization
- Machine learning

Usually studied with matrix linear algebra

 $\begin{bmatrix} 1 & 8 & 4 \\ 9 & 2 & 2 \\ 7 & 1 & 6 \end{bmatrix}$ 





#### The context

Different disciplines as physics, computer science, chemistry... relay on numerical simulations to study

- Stochastic equations
- Uncertainty quantification
   problems
- Quantum and vibration chemistry
- Optimization
- Machine learning



Usually studied with matrix linear algebra





+ Better representation of structured problems and data

Ínnia

#### Tensors

- + Better representation of structured problems and data
- Curse of dimensionality



#### Tensors

- + Better representation of structured problems and data
- Curse of dimensionality

Over the years different approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Figure: from [Bi et al. 2022]



#### **Tensors**

- + Better representation of structured problems and data
- Curse of dimensionality

Over the years different approximation techniques were proposed

- Canonical Polyadic
- Tucker
- Hierarchical Tucker
- Tensor-Train

Figure: from [Bi et al. 2022]



These approximation techniques introduce compression errors, so what are their effects inside classical algorithms?

What are the effects of tensor representation and compression inside classical algorithms?

Íngia -

## What are the effects of tensor representation and compression inside classical algorithms?

#### Numerical linear algebra



- How to solve a high dimensional linear system of equations, represented by low rank tensors?
- How to construct an orthogonal basis of a tensor subspace?
- What is the effect of tensor compression on the final solution?

# What are the effects of tensor representation and compression inside classical algorithms?

#### Numerical linear algebra



- How to solve a high dimensional linear system of equations, represented by low rank tensors?
- How to construct an orthogonal basis of a tensor subspace?
- What is the effect of tensor compression on the final solution?

- How to relate and interpret point clouds from tensor data?
- Is it mathematically meaningful to visualize simultaneously more than two point clouds?



#### Data analysis



# Table of contents

#### 1. Introduction

- Numerical linear algebra

   The variable accuracy approach
   GMRES in matrix computation
   GMRES in tensor computation
   Orthogonalization kernels

   Data analysis

   Correspondence Analysis
   Multiway Correspondence Analysis
- 4. Conclusion & perspectives



## Numerical linear algebra

- The variable accuracy approach
- Generalized Minimal RESidual (GMRES)
  - > numerical results in matrix computation
  - numerical results in Tensor-Train (TT) format
- Orthogonalization kernels
  - > TT-algorithms
  - > numerical loss of orthogonality in TT-format

Íngia

#### Maths vs computer science

#### Mathematical world

•  $\pi = 3.1415926535897932384626433...$ 

#### **Computer world**

>>>  $\overline{\pi}$  = 3.141592653589793



Ínnin -

#### Maths vs computer science

#### Mathematical world

- $\pi = 3.1415926535897932384626433...$
- x = 0.1 and y = 0.2, then x + y = 0.3

#### **Computer world**

>>>  $\overline{\pi}$  = 3.141592653589793



Ínnia

#### Representation and computational error

Denoting by u the **unit roundoff** of the working precision

#### Standard IEEE model [Higham 2002]

 $fl(x) = x(1 + \xi)$  [storage perturbation]  $fl(x \operatorname{op} y) = (x \operatorname{op} y)(1 + \varepsilon)$  [computational perturbation]

with  $|\xi| \leq u$ ,  $|\varepsilon| \leq u$  and  $op \in \{+, -, \times, \div\}$ .

Íngia

#### Representation and computational error

Denoting by u the **unit roundoff** of the working precision

#### Standard IEEE model [Higham 2002]

$$fl(x) = x(1 + \xi)$$
 [storage perturbation]  
 $fl(x \operatorname{op} y) = (x \operatorname{op} y)(1 + \varepsilon)$  [computational perturbation]

with  $|\xi| \leq u$ ,  $|\varepsilon| \leq u$  and  $op \in \{+, -, \times, \div\}$ .

#### Example

Assuming to work in floating point 64, with  $u_{64} = 10^{-16}$ 

• 
$$\overline{\pi} = 3.141592653589793 = \pi(1+\xi)$$
 with  $|\xi| \le u_{64}$ 

• 
$$\overline{\mathbf{x}} = 0.1$$
 and  $\overline{\mathbf{y}} = 0.2$ , then

$$\overline{\mathbf{x} + \mathbf{y}} = 0.300000000000004 = (0.2 + 0.1)(1 + \varepsilon)$$
  
vith  $|\varepsilon| \le u_{64}$ 



The storage precision and the computational one are decoupled



#### The variable accuracy approach

The storage precision and the computational one are decoupled

 $\delta$ -componentwise storage

 $\delta$ -storage $(x) = x(1 + \xi)$ 

with  $|\xi| \leq \delta$  with  $\delta$  the storage precision.

Standard IEEE model [Higham 2002]

$$fl(x \operatorname{op} y) = (x \operatorname{op} y)(1 + \varepsilon)$$

with  $|\varepsilon| \leq u$  with *u* the computation precision.

#### The variable accuracy approach

The storage precision and the computational one are decoupled

 $\delta$ -componentwise storage

 $\delta$ -storage $(x) = x(1 + \xi)$ 

with  $|\xi| \leq \delta$  with  $\delta$  the storage precision.

Standard IEEE model [Higham 2002]

$$fl(x \operatorname{op} y) = (x \operatorname{op} y)(1 + \varepsilon)$$

with  $|\varepsilon| \leq u$  with *u* the computation precision.

#### $\delta$ -storage

 $fl_{\delta}(x \operatorname{op} y) = \delta\operatorname{-storage}(fl(x \operatorname{op} y)) = (x \operatorname{op} y)(1 + \varepsilon + \xi)$ with  $|\varepsilon| \le u$ ,  $|\xi| \le \delta$  and  $\operatorname{op} \in \{+, -, \times, \div\}$ .



#### Application of the variable accuracy approach I

#### **Iterative solver**

 Generalized Minimal RESidual (GMRES)

in matrix and tensor format



$$\begin{cases} x_1 + x_2 - 3x_3 - -10 \\ 6x_2 - 2x_3 + x_4 = 7 \\ 2x_3 - 3x_4 = 13 \end{cases}$$

#### **Orthogonalization kernels**

- Classical and Modified Gram-Schmidt (CGS, MGS)
- Gram approach
- Householder transformation

only in tensor format

#### Background on GMRES [Saad and Schultz 1986]

To solve Ax = b with initial guess  $x_0 = 0$ , at the *k*-th iteration GMRES minimizes the norm of residual

$$||r_k|| = \min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||$$

in the Krylov space  $\mathcal{K}_k(A, b) = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}$ 



#### Background on GMRES [Saad and Schultz 1986]

To solve Ax = b with initial guess  $x_0 = 0$ , at the *k*-th iteration GMRES minimizes the norm of residual

$$||r_k|| = \min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||$$

in the Krylov space  $\mathcal{K}_k(A, b) = \text{span}\{b, Ab, \dots, A^{k-1}b\}$ Practically, let  $V_k = [v_1, \dots, v_k]$  such that

$$\mathcal{K}_k(A, b) = \operatorname{span}\{v_1, \ldots, v_k\}$$

thanks to the Arnoldi relation

$$AV_k = V_{k+1}\overline{H}_k$$
 with  $V_{k+1}^{\top}V_{k+1} = \mathbb{I}_{k+1}$ 



#### Background on GMRES [Saad and Schultz 1986]

To solve Ax = b with initial guess  $x_0 = 0$ , at the *k*-th iteration GMRES minimizes the norm of residual

$$||r_k|| = \min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||$$

in the Krylov space  $\mathcal{K}_k(A, b) = \text{span}\{b, Ab, \dots, A^{k-1}b\}$ Practically, let  $V_k = [v_1, \dots, v_k]$  such that

$$\mathcal{K}_k(A, b) = \operatorname{span}\{v_1, \dots, v_k\}$$

thanks to the Arnoldi relation

$$AV_k = V_{k+1}\overline{H}_k$$
 with  $V_{k+1}^{\top}V_{k+1} = \mathbb{I}_{k+1}$ 

Commonly Householder or Modified Gram-Schmidt algorithms are used to construct  $V_{\boldsymbol{k}}$ 



Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Given the linear system Ax = b and a working precision u, then





Denoting by u the unit roundoff of the working precision for solving the linear system

$$Ax = b$$

then in [Drkosova, Greenbaum, Rozložník, and Strakoš 1995] and in [Paige, Rozložník, and Strakoš 2006], it is proved that

$$\eta_{A,b}(x_k) = \mathcal{O}(u)$$



Denoting by u the unit roundoff of the working precision for solving the linear system

$$Ax = b$$

then in [Drkosova, Greenbaum, Rozložník, and Strakoš 1995] and in [Paige, Rozložník, and Strakoš 2006], it is proved that

$$\eta_{A,b}(x_k) = \mathcal{O}(u)$$
$$\left\| \mathbb{I}_k - V_k^\top V_k \right\| \eta_{A,b}(x_k) = \mathcal{O}(u)$$

Denoting by u the unit roundoff of the working precision for solving the linear system

$$Ax = b$$

then in [Drkosova, Greenbaum, Rozložník, and Strakoš 1995] and in [Paige, Rozložník, and Strakoš 2006], it is proved that

$$\eta_{A,b}(x_k) = \mathcal{O}(u)$$
$$\left\| \mathbb{I}_k - V_k^\top V_k \right\| \eta_{A,b}(x_k) = \mathcal{O}(u)$$

So, the backward error  $\eta_{A,b}$  is suggested as stopping criterion for GMRES



Denoting by u the unit roundoff of the working precision for solving the linear system

$$Ax = b$$

then in [Drkosova, Greenbaum, Rozložník, and Strakoš 1995] and in [Paige, Rozložník, and Strakoš 2006], it is proved that

$$\eta_{A,b}(x_k) = \mathcal{O}(u)$$
$$\left\| \mathbb{I}_k - V_k^\top V_k \right\| \eta_{A,b}(x_k) = \mathcal{O}(u)$$

So, the backward error  $\eta_{A,b}$  is suggested as stopping criterion for GMRES

For MGS-GMRES the backward stability holds if  $k \in \mathbb{N}$  is such that

$$\kappa(V_{k+1}) > \frac{4}{3}$$



#### 32bit floating point arithmetic



Íngia
#### $\delta$ -componentwise storage

Any vector  $z \in \mathbb{R}^n$  is replaced by  $\overline{z} \in \mathbb{R}^n$  such that

$$fl(z(i)) = \overline{z}(i)$$
 such that

$$\frac{|z(i)-\overline{z}(i)|}{|z(i)|} \leq \delta.$$

#### fp32 computation

#### fp64 computation





#### $\delta$ -componentwise storage

Any vector  $z \in \mathbb{R}^n$  is replaced by  $\overline{z} \in \mathbb{R}^n$  such that

$$fl(z(i)) = \overline{z}(i)$$
 such that

$$\frac{|z(i)-\overline{z}(i)|}{|z(i)|} \leq \delta.$$

#### fp32 computation

#### fp64 computation





# <u>*δ*-normwise storage model</u>

Length n vectors are stored in compressed format with

# $\delta\text{-}\mathbf{component}$ storage

$$\frac{|z(i)-\overline{z}(i)|}{|z|} \leq \delta.$$

#### Remark

[Drkosova, Greenbaum, Rozložník, and Strakoš 1995; Paige, Rozložník, and Strakoš 2006]

> **do** readily apply



# <u>*δ*-normwise storage model</u>

Length n vectors are stored in compressed format with

#### $\delta$ -component storage

$$\frac{|z(i)-\overline{z}(i)|}{|z|} \leq \delta.$$

# $\delta$ -**normwise** storage

$$\frac{||z-\overline{z}||}{||z||} \le \delta.$$

#### Remark

[Drkosova, Greenbaum, Rozložník, and Strakoš 1995; Paige, Rozložník, and Strakoš 2006]

> do readily apply

#### Remark

[Drkosova, Greenbaum, Rozložník, and Strakoš 1995; Paige, Rozložník, and Strakoš 2006]

> do not readily apply

Innia

# Numerical experiment comparison



The  $\delta$ -componentwise and  $\delta$ -normwise perturbation lead to similar results.

(nnin -

15/42 — Numerical linear algebra and data analysis in tensor format — M. Iannacito

#### $\delta$ -componentwise

# <u>*δ*-normwise perturbation: practical cases</u>

Practical cases where the variable accuracy approach with **normwise perturbation** find an application

Lossy compressor

Tensor problem



Íngia

#### Context

The problem  $\begin{cases}
\mathcal{L}(u) = f & \text{in } \Omega \\
u = f_0 & \text{in } \partial\Omega
\end{cases} \quad \text{for } \underbrace{\Omega \subseteq \mathbb{R}^{n_1 \times \dots \times n_d}}_{\text{discretization}} \bullet \underbrace{\left( \bigcup_{i \in \mathcal{I}} \right)^{\Delta i}}_{0} \bullet \underbrace{\left( \bigcup_{i \in \mathcal{I}} \right)^{\Delta i}}_{1} \bullet \underbrace{\left( \bigcup_{i \in \mathcal{I}}$ 

where  $\mathbf{A} : \mathbb{R}^{n_1 \times \cdots \times n_d} \to \mathbb{R}^{n_1 \times \cdots \times n_d}$  is a multilinear operator and  $\mathbf{b} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$  a tensor.

- Curse of dimensionality
- TT-formalism [Oseledets 2011]

#### **Tensor Network formalism**



Ínnía\_



Ínnía -



Innia



Ínría\_



TT-rounding [Oseledets 2011]

# **Robustness of TT-GMRES**

# TT-rounding at precision $\delta$

For every TT-vector  $\mathbf{z} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$  we compress it getting  $\overline{\mathbf{z}} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$  such that

$$\frac{\|\mathbf{z} - \overline{\mathbf{z}}\|}{\|\mathbf{z}\|} \le \delta.$$

# Robustness of TT-GMRES

# TT-rounding at precision $\delta$

For every TT-vector  $\mathbf{z} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$  we compress it getting  $\overline{\mathbf{z}} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$  such that

$$\frac{\|\mathbf{z} - \overline{\mathbf{z}}\|}{\|\mathbf{z}\|} \le \delta.$$

# Convection-Diffusion problem

$$\begin{cases} -\Delta \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u} &= 0\\ \mathbf{u}_{\{y=1\}} &= 1 \end{cases} \quad \text{in} \quad \Omega = [-1, 1]^3 \end{cases}$$



# Robustness of TT-GMRES

# TT-rounding at precision $\delta$ For every TT-vector $\mathbf{z} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ we compress it getting $\overline{\mathbf{z}} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ such

that

$$\frac{\|\mathbf{z} - \overline{\mathbf{z}}\|}{\|\mathbf{z}\|} \le \delta.$$

# Convection-Diffusion problem

$$\begin{cases} -\Delta \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u} &= 0\\ \mathbf{u}_{\{y=1\}} &= 1 \end{cases} \quad \text{ in } \quad \Omega = [-1, 1]^3 \end{cases}$$



19/42 — Numerical linear algebra and data analysis in tensor format — M. Iannacito

$$10^{-1}$$

Convergence history N - 64

# Parameter dependent problem

Let the parametric convection-diffusion problem be

$$\begin{cases} -\alpha \Delta \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u} &= 0\\ \mathbf{u}_{\{y=1\}} &= 1 \end{cases} \quad \text{in} \quad \Omega = [-1, 1]^d \text{ and } \alpha \in [1, 10] \end{cases}$$

Solve independently p tensor linear systems of order d

•

$$\mathbf{A}_{\alpha_i} \mathbf{x}_{\alpha_i} = \mathbf{b}_{\alpha_i}$$
$$\forall \alpha_i \in \{\alpha_1, \dots, \alpha_p\}.$$



#### Parameter dependent problem

Let the parametric convection-diffusion problem be

$$\begin{cases} -\alpha \Delta \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u} &= 0\\ \mathbf{u}_{\{y=1\}} &= 1 \end{cases} \quad \text{in} \quad \Omega = [-1, 1]^d \text{ and } \alpha \in [1, 10]$$

Solve independently p tensor linear systems of order d

$$\mathbf{A}_{\alpha_i} \mathbf{x}_{\alpha_i} = \mathbf{b}_{\alpha_i}$$
$$\forall \alpha_i \in \{\alpha_1, \dots, \alpha_p\}.$$

Solve once the tensor linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  of order (d + 1)

$$\begin{bmatrix} \mathbf{A}_{\alpha_1} & & \\ & \ddots & \\ & & \mathbf{A}_{\alpha_{\rho}} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[\alpha_1]} \\ \vdots \\ \mathbf{x}^{[\alpha_{\rho}]} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\alpha_i} \\ \vdots \\ \mathbf{b}_{\alpha_i} \end{bmatrix}$$

#### Parameter dependent problem

Let the parametric convection-diffusion problem be

$$\begin{cases} -\alpha \Delta \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u} &= 0\\ \mathbf{u}_{\{y=1\}} &= 1 \end{cases} \quad \text{in} \quad \Omega = [-1, 1]^d \text{ and } \alpha \in [1, 10]$$

Solve independently p tensor linear systems of order d

Solve once the tensor linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  of order (d + 1)

$$\begin{aligned} \mathbf{A}_{\alpha_i} \mathbf{x}_{\alpha_i} &= \mathbf{b}_{\alpha_i} \\ \forall \alpha_i \in \{\alpha_1, \dots, \alpha_p\}. \end{aligned} \qquad \begin{bmatrix} \mathbf{A}_{\alpha_1} \\ & \ddots \\ & & \mathbf{A}_{\alpha_p} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[\alpha_1]} \\ \vdots \\ \mathbf{x}^{[\alpha_p]} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\alpha_i} \\ \vdots \\ \mathbf{b}_{\alpha_i} \end{bmatrix} \end{aligned}$$

What is the numerical quality of  $\mathbf{x}^{[\alpha_i]}$  slice of  $\mathbf{x}$  solution of the (d+1) tensor linear system and by construction the solution of the problem  $\mathbf{A}_{\alpha_i}\mathbf{x}_{\alpha_i} = \mathbf{b}_{\alpha_i}$ ?



# Order d vs (d+1) solution bounds

Let the backward error of the (d + 1) system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  be

$$\eta_{\mathbf{A},\mathbf{b}}(\mathbf{x}) = \frac{||\mathbf{b} - \mathbf{A}\mathbf{x}||}{||\mathbf{A}||||\mathbf{x}|| + ||\mathbf{b}||}.$$

Let  $\mathbf{A}_i$ ,  $\mathbf{b}_i$  be the multilinear operator and the right-hand side of the parametric problem for the parameter value  $\alpha_i$ , then define

$$\eta_{\mathbf{A}_i,\mathbf{b}_i}(\mathbf{x}^{[i]}) = \frac{||\mathbf{b}_i - \mathbf{A}_i \mathbf{x}^{[i]}||}{||\mathbf{A}_i|||\mathbf{x}^{[i]}|| + ||\mathbf{b}_i|}$$

with  $\mathbf{x}^{[i]}$  denotes the *i*-th slice of  $\mathbf{x}$  on the parameter mode for  $i \in \{1, \dots, p\}$ . Then we prove that

$$ho_{\mathbf{b}}(\mathbf{x}) \, 
ho_i(\mathbf{x}) \geq \eta_{\mathbf{A}_i,\mathbf{b}_i}(\mathbf{x}^{[i]}) \qquad ext{where} \qquad 
ho_i(\mathbf{x}) = rac{\|\mathbf{A}\| \|\mathbf{x}\| + \sqrt{
ho}}{\|\mathbf{A}_i \mathbf{x}^{[i]}\| + 1}.$$



21/42 — Numerical linear algebra and data analysis in tensor format — M. Iannacito

 $\eta_{\mathsf{A}}$ 

#### Numerical experiments



*Figure:* 4-d Parametric convection diffusion  $\eta_{AM,b}$  for and n = 255, bound using  $\delta = \varepsilon = 10^{-5}$  and p = 20 uniformly logarithmically distributed parameter values  $\alpha_i \in [1, 10]$ 



- Backward stability of GMRES holds numerically when data are stored with
  - > componentwise perturbations
  - > normwise perturbations

both have practical implementations

- GMRES in TT-format with TT-rounding seems to be backward stable
- Parameter dependent TT-problems of order d can be solved at once through an order (d + 1) problem, guaranteeing backward stable bounds linking the (d + 1) and d solutions
- Loss of orthogonality bounds for six widely used orthogonalization kernels appears to hold true when generalized to TT-format with normwise perturbation



# Application of the variable accuracy approach II

#### **Iterative solver**

- Generalized Minimal RESidual (GMRES)
- in matrix and tensor format



# **Orthogonalization kernels**

- Classical and Modified Gram-Schmidt (CGS, MGS)
- Gram approach
- Householder transformation only in tensor format

# **Classical and Modified Gram-Schmidt**

 $Q, R = CGS(A, \delta)$  $Q, R = MGS(A, \delta)$ Input:  $A = [a_1, \ldots, a_m], \delta \in \mathbb{R}_+$ Input:  $A = [a_1, \ldots, a_m], \delta \in \mathbb{R}_+$ 1 for i = 1, ..., m do 1 for i = 1, ..., m do  $p = a_i$ 2  $p = a_i$ 2 for i = 1, ..., i - 1 do 3 for i = 1, ..., i - 1 do 3  $R(i, j) = \langle a_i, q_i \rangle$  $R(i,j) = \langle \mathbf{p}, \mathbf{q}_i \rangle$ 4 4  $p = p - R(i, j)q_i$  $p = p - R(i, j)q_i$ 5 5 end 6 6 end  $p = \delta$ -storage(p) $p = \delta$ -storage(p) 7 7 R(i,i) = ||p||8 R(i,i) = ||p||8  $q_i = 1/R(i, i) p$  $q_i = 1/R(i, i) p$ 9 9 10 end 10 end **Output:**  $Q = [q_1, ..., q_m], R$ **Output:**  $Q = [q_1, ..., q_m], R$ 

# **Classical and Modified Gram-Schmidt**

 $\mathcal{Q}, R = CGS(\mathcal{A}, \delta)$  $\mathcal{Q}, R = MGS(\mathcal{A}, \delta)$ Input:  $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ Input:  $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}, \delta \in \mathbb{R}_+$ 1 for i = 1, ..., m do 1 for i = 1, ..., m do  $\mathbf{p} = \mathbf{a}_i$ 2  $\mathbf{p} = \mathbf{a}_i$ 2 for i = 1, ..., i - 1 do for i = 1, ..., i - 1 do 3 3  $R(i, j) = \langle \mathbf{a}_i, \mathbf{q}_i \rangle$  $R(i,j) = \langle \mathbf{p}, \mathbf{q}_i \rangle$ 4 4  $\mathbf{p} = \mathbf{p} - R(i, j)\mathbf{q}_i$  $\mathbf{p} = \mathbf{p} - R(i, j)\mathbf{q}_i$ 5 5 end 6 6 end  $\mathbf{p} = \text{TT-rounding}(\mathbf{p}, \delta)$ 7 |  $\mathbf{p} = \text{TT-rounding}(\mathbf{p}, \delta)$ 7  $R(i,i) = ||\mathbf{p}||$ 8  $R(i,i) = ||\mathbf{p}||$ 8  $q_i = 1/R(i, i) p$  $q_i = 1/R(i, i) p$ 9 9 10 end 10 end **Output:**  $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$ **Output:**  $\mathcal{Q} = \{\mathbf{q}_1, \ldots, \mathbf{q}_m\}, R$ 

They readily write in TT-format.



# Householder transformation

Given a vector  $x \in \mathbb{R}^n$  and a direction  $y \in \mathbb{R}^n$ , the Householder reflector H reflects x along y, i.e.,

Hx = ||x||y with ||y|| = 1.

Thanks to its properties, H writes as

$$H = \mathbb{I}_n - \frac{2}{||u||^2} u \otimes u$$
 with  $u = (x - ||x||y).$ 

The practical implementation of the Householder transformation kernel uses the components of the input vectors.

#### Remark

The Householder algorithm does **not** readily apply to tensor in TT-formats, because of the compressed nature of this format.

Íncia

# Loss Of Orthogonality

Let  $Q_k = [q_1, \ldots, q_k]$  be the orthogonal basis produced by an orthogonalization kernel, then the **Loss Of Orthogonality** is

 $||I_k - Q_k^\top Q_k||.$ 

It measures the quality in terms of orthogonality of the computed basis. It is linked with the linearly dependency of the input vectors  $A_k = [a_1, \ldots, a_k]$ , estimated through  $\kappa(A_k)$ .

| Matrix                               |             |                                                 |
|--------------------------------------|-------------|-------------------------------------------------|
| Source                               | Algorithm   | $\left\ \mathbb{I}_{k}-Q_{k}^{	op}Q_{k} ight\ $ |
| [Stathopoulos and Wu 2002]           | Gram        | $\mathcal{O}(u\kappa^2(A_k))$                   |
| [Giraud, Langou, and Rozložník 2005] | CGS         | $\mathcal{O}(u\kappa^2(A_k))$                   |
| [Björck 1967]                        | MGS         | $\mathcal{O}(u\kappa(A_k))$                     |
| [Giraud, Langou, and Rozložník 2005] | CGS2        | $\mathcal{O}(u)$                                |
| [Giraud, Langou, and Rozložník 2005] | MGS2        | $\mathcal{O}(u)$                                |
| [Wilkinson 1965]                     | Householder | $\mathcal{O}(u)$                                |

$$\mathbf{x}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{a}_k, \texttt{max\_rank} = 1) \hspace{0.2cm} \texttt{with} \hspace{0.2cm} \mathbf{a}_{k+1} = rac{1}{\|\mathbf{x}_{k+1}\|} \mathbf{x}_{k+1}$$

 $\mathbf{x}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{a}_k, \texttt{max\_rank} = 1) \hspace{0.2cm} \texttt{with} \hspace{0.2cm} \mathbf{a}_{k+1} = rac{1}{\|\mathbf{x}_{k+1}\|} \mathbf{x}_{k+1}$ 



- Gram approach
- CGS
- $\kappa^2(A_k)$

 $\mathcal{O}(u\kappa^2(A_k))$ 

*Figure:* Loss of orthogonality for m = 20TT-vectors of order d = 3 and mode size n = 15, rounding precision  $\delta = 10^{-5}$ 



$$\mathbf{x}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{a}_k, \texttt{max\_rank} = 1) \hspace{0.2cm} \texttt{with} \hspace{0.2cm} \mathbf{a}_{k+1} = rac{1}{\|\mathbf{x}_{k+1}\|} \mathbf{x}_{k+1}$$



• MGS

•  $\kappa(A_k)$ 

 $\mathcal{O}(u\kappa(A_k))$ 

*Figure:* Loss of orthogonality for m = 20TT-vectors of order d = 3 and mode size n = 15, rounding precision  $\delta = 10^{-5}$ 



-

$$\mathbf{x}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{a}_k, \texttt{max\_rank} = 1) \hspace{0.2cm} \texttt{with} \hspace{0.2cm} \mathbf{a}_{k+1} = rac{1}{\|\mathbf{x}_{k+1}\|} \mathbf{x}_{k+1}$$



*Figure:* Loss of orthogonality for m = 20 TT-vectors of order d = 3 and mode size n = 15, rounding precision  $\delta = 10^{-5}$ 

• CGS2

MGS2

• Householder transformation

 $\mathcal{O}(u)$ 



-

 $\mathbf{x}_{k+1} = \texttt{TT-rounding}(\mathbf{\Delta}_d \mathbf{a}_k, \texttt{max\_rank} = 1) \hspace{0.2cm} \texttt{with} \hspace{0.2cm} \mathbf{a}_{k+1} = rac{1}{\|\mathbf{x}_{k+1}\|} \mathbf{x}_{k+1}$ 



*Figure:* Loss of orthogonality for m = 20 TT-vectors of order d = 3 and mode size n = 15, rounding precision  $\delta = 10^{-5}$ 

- Gram approach
- CGS
- MGS
- CGS2
- MGS2
- Householder transformation



|             | Matrix, theoretical                                              | TT-format, conjecture                                            |
|-------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Algorithm   | $\left\  \mathbb{I}_k - \mathcal{Q}_k^	op \mathcal{Q}_k  ight\ $ | $\left\  \mathbb{I}_k - \mathcal{Q}_k^	op \mathcal{Q}_k  ight\ $ |
| Gram        | $\mathcal{O}(u\kappa^2(A_k))$                                    | $\mathcal{O}(\delta\kappa^2(\mathcal{A}_k))$                     |
| CGS         | $\mathcal{O}(u\kappa^2(A_k))$                                    | $\mathcal{O}(\delta\kappa^2(\mathcal{A}_k))$                     |
| MGS         | $\mathcal{O}(u\kappa(A_k))$                                      | $\mathcal{O}(\delta\kappa(\mathcal{A}_k))$                       |
| CGS2        | $\mathcal{O}(u)$                                                 | $\mathcal{O}(\delta)$                                            |
| MGS2        | $\mathcal{O}(u)$                                                 | $\mathcal{O}(\delta)$                                            |
| Householder | $\mathcal{O}(u)$                                                 | $\mathcal{O}(\delta)$                                            |



29/42 — Numerical linear algebra and data analysis in tensor format — M. Iannacito

-

- Backward stability of GMRES holds numerically when data are stored with
  - > componentwise perturbations
  - > normwise perturbations

both have practical implementations

- GMRES in TT-format with TT-rounding seems to be backward stable
- Parameter dependent TT-problems of order d can be solved at once through an order (d + 1) problem, guaranteeing backward stable bounds linking the (d + 1) and d solutions
- Loss of orthogonality bounds for six widely used orthogonalization kernels appears to hold true when generalized to TT-format with normwise perturbation





# Data analysis

- Background on Correspondence Analysis
- MultiWay Correspondence Analysis
- A study case: the Malabar dataset

#### Joint work with A. Franc



# Malabar dataset [Auby et al. 2022]

- $d = 4 \mod \text{dataset}$ 
  - 1st mode of Operational Taxonomic Units (OTUs) with size n<sub>1</sub> = 3539
  - 2nd mode of locations with size n<sub>2</sub> = 4, namely Bouee13, Comprian, Jacquets, Teychan
  - 3rd mode of water column position with size n<sub>3</sub> = 2, that are pelagic and benthic
  - 4th mode of seasons with size n<sub>4</sub> = 4, that are spring, summer, autumn and winter



*Figure:* Aerial tour of the Arcachon basin, France

Ínnia



Correspondence Analysis on mode 1

MultiWay Correspondence Analysis

# Is it mathematically meaningful to display point clouds together?


# Correspondence Analysis

Correspondence Analysis (CA) is a Principal Component Analysis (PCA) meant to investigate contingency tables through a **specific norm** 



#### **Geometrical meaning**

The *h*-th Principal Coordinate of the *i*-th category of the row variable is the barycentre of the *h*-th Principal Coordinate of all the column variable categories

Íngla

MWCA is a Principal Components Analysis of a multiway table with a **specific norm** 





## Tucker model

Let  $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$  be an order 3 tensor, then

Tucker format [Tucker 1963]

$$\mathbf{A} = \sum_{\alpha,\beta,\gamma=1}^{r_1,\ldots,r_d} \mathbf{C}(\alpha,\beta,\gamma) u_{\alpha}^{(1)} \otimes u_{\beta}^{(2)} \otimes u_{\gamma}^{(3)}$$

where **C** is the **core tensor**,  $U_k = [u_1^{(k)}, \ldots, u_{r_k}^{(k)}]$  is an orthogonal  $(n_k \times r_k)$  matrix with  $r_k = \operatorname{rank}(A^{(k)})$ . More compactly  $\mathbf{A} = (U_1, U_2, U_3)\mathbf{C}$ 



## Tucker model

Let  $\mathbf{A} \in \mathbb{R}^{n_1 imes n_2 imes n_3}$  be an order 3 tensor, then

Tucker format [Tucker 1963]

$$\mathbf{A} = \sum_{\alpha,\beta,\gamma=1}^{r_1,\ldots,r_d} \mathbf{C}(\alpha,\beta,\gamma) u_{\alpha}^{(1)} \otimes u_{\beta}^{(2)} \otimes u_{\gamma}^{(3)}$$

where **C** is the **core tensor**,  $U_k = [u_1^{(k)}, \ldots, u_{r_k}^{(k)}]$  is an orthogonal  $(n_k \times r_k)$  matrix with  $r_k = \operatorname{rank}(A^{(k)})$ . More compactly  $\mathbf{A} = (U_1, U_2, U_3)\mathbf{C}$ 

Tucker decomposition can be computed through the HOSVD [De Lathauwer, De Moor, and Vandewalle 2000], that performs a SVD for each matricization

$$\mathbf{A}^{(k)} = U_k \Sigma_k V_k^ op$$

and the core tensor is obtained projecting the tensor **A** in the new basis, i.e.,  $\mathbf{C} = (U_1^\top, U_2^\top, U_3^\top)\mathbf{A}$ 

# **MWCA** inner product

Let **A** be a relative frequencies multiway contingency table, the 1st mode marginal is  $a_1 \in \mathbb{R}^{n_1}$  such that

$$m{s}_1(i) = \sum_{j,k=1}^{n_2,n_3} m{A}(i,j,k)$$

- S' denotes the Euclidean space  $\mathbb{R}^{n_1 \times n_2 \times n_3}$  with the inner product induced by  $(D_1^{-1}, D_2^{-1}, D_3^{-1})$ , with  $D_k = \text{diag}(\sqrt{a_k})$
- S denotes the Euclidean space  $\mathbb{R}^{n_1 \times n_2 \times n_3}$  with the standard inner product.

The two Euclidean spaces are isometric through u defined as

$$u:\mathcal{S}' o\mathcal{S}$$
 such that  $u(\mathbf{A})=(D_1^{-1},D_2^{-1},D_3^{-1})\mathbf{A}$ 



# MWCA scheme



Point cloud coordinates in  $\mathcal{S}'$ 

Point cloud coordinates in  ${\mathcal S}$ 

 $W_k = \hat{U}_k \Sigma_k = D_k U_k \Sigma_k \qquad \qquad Y_k = U_k \Sigma_k$ 

where  $\Sigma_k$  are the singular values of  $\mathbf{X}^{(k)}$ 



# **MWCA** barycentric relation

If  $Z_1 = D_1^{-2} W_1$ , then

**Barycentric relation** 

$$oldsymbol{Z}_1 = D_1^{-2} \mathbf{A}^{(1)} (oldsymbol{Z}_3 \otimes_{\mathrm{K}} oldsymbol{Z}_2) (\Sigma_1^{-1} \mathbf{B}_1^{(1)})^ op$$

where

$$\mathbf{B}_1 = (\mathbb{I}_k, \Sigma_2^{-1}, \Sigma_3^{-1})\mathbf{C}$$

with **C** the core tensor of  $\mathbf{X} = \nu(\mathbf{A})$ 

## Geometrical meaning

The  $h_i$ -th Principal Coordinate of the *i*-th category of the 1st variable is the barycentre of a linear combination of the *h*-th Principal Coordinate of all the other two variable categories and coefficients expressed by **B**<sub>1</sub> entries

India

## MWCA on Malabar dataset



- Orthogonality among water column positions
- Distribution of OTU along their directions



# **MWCA on Malabar dataset**



Ínría\_

## MWCA on Malabar dataset

- Water column positions still orthogonal, less determinant
- OTU distribution affected by seasons and locations too
- Locations and seasons are clustered
- Correlation between seasons and locations





- MultiWay Correspondence Analysis has a geometric nature as Correspondence Analysis
- The barycentric relation characterizing CA holds also for MWCA
- MWCA highlights inter-variable interactions
- CA appears more suitable for studying combinations of categories from different variables





# Conclusion & perspectives



• Variable accuracy approach for GMRES with componentwise and normwise  $\delta$ -storage perturbations

- GMRES in TT-format and parameter dependent bounds
- Numerical study of the loss of orthogonality for six widely used orthogonalization kernels in TT-format
- MultiWay Correspondence Analysis with the Malabar dataset study case



- Variable accuracy approach for GMRES with componentwise and normwise δ-storage perturbations [Inria RR-9483], joint work with *E. Agullo, O. Coulaud, L. Giraud, G. Marait and N. Schenkels*
- GMRES in TT-format and parameter dependent bounds [Inria RR-9484], joint work with *O. Coulaud and L. Giraud*
- Numerical study of the loss of orthogonality for six widely used orthogonalization kernels in TT-format [Inria RR-9491], joint work with *O. Coulaud and L. Giraud*
- MultiWay Correspondence Analysis with the Malabar dataset study case [Inria RR-9429], joint work with *O. Coulaud and A. Franc*

- Numerical linear algebra
  - Theoretical proof for the normwise δ-storage (for future work)
  - > Implementation of TT-GMRES with the Householder kernel
  - > Study of preconditioner for the tensor case
- Data analysis
  - Statistical interpretation of MultiWay Correspondence Analysis results
  - Combination of isometry and Canonical Polyadic decomposition
  - > New visualization techniques



Thanks for the attention.

Questions?



Alternative backward stable stopping criterion

Definition of normwise backward error

$$\begin{split} \eta_{A,b}(x_k) &= \min_{\Delta A, \Delta b} \{ \tau > 0 : ||\Delta A|| \le \tau ||A||, \ ||\Delta b|| \le \tau ||b|| \text{ and} \\ & (A + \Delta A) x_k = b + \Delta \} \\ &= \frac{||Ax_k - b||}{||A||||x_k|| + ||b||} \end{split}$$

If M is a preconditioner, the previous stopping criterion gets

$$\eta_{AM,b}(t_k) = \frac{||AMt_k - b||}{||AM|||t_k|| + ||b||}$$
 and  $x_k = Mt_k$ .

Another possible one based just on the right-hand side is

$$\begin{split} \eta_b(x_k) &= \min_{\Delta A, \Delta b} \{\tau > 0 : ||\Delta b|| \leq \tau ||b|| \text{ and } Ax_k = b + \Delta b \} \\ &= \frac{||Ax_k - b||}{||b||}. \end{split}$$



# TT-rounding [Oseledets 2011]

$$\begin{array}{l} \displaystyle \frac{\hat{\mathbf{a}}_{1},\ldots,\hat{\mathbf{a}}_{d}=\mathsf{TT-rounding}\big((\underline{\mathbf{a}}_{1},\ldots,\underline{\mathbf{a}}_{d}),\,\delta\big) \\ \hline \mathbf{Input:} \ \underline{\mathbf{a}}_{i} \in \mathbb{R}^{r_{i-1} \times n_{i} \times r_{i}} \text{ for every } i \in \{1,\ldots,d\},\,\delta \in \mathbb{R}_{+} \\ 1 \ \delta' = \frac{\delta}{\sqrt{d-1}} \|\mathbf{a}\| \\ 2 \ \mathbf{for} \ i = d,\ldots,2 \ \mathbf{do} \\ 3 \ | \ A_{i} = \mathtt{matricize}(\underline{\mathbf{a}}_{i},\mathtt{mode} = 1) \\ 4 \ | \ Q_{i}, R = \mathbb{QR}(A_{i}^{\top}) \\ 5 \ | \ \underline{\mathbf{a}}_{i} = \mathtt{reshape}(Q_{i}^{\top}, [r_{i-1}, n_{i}, r_{i}]) \\ 6 \ | \ \underline{\mathbf{a}}_{i-1} = \underline{\mathbf{a}}_{i-1} \times 3 R^{\top} \\ 7 \ \mathbf{end} \\ 8 \ s_{0} = 1 \\ 9 \ \mathbf{for} \ i = 1,\ldots,d-1 \ \mathbf{do} \\ 10 \ | \ A_{i} = \mathtt{matricize}(\underline{\mathbf{a}}_{i},\mathtt{mode} = 3) \\ \hat{U}_{i},\hat{\Sigma}_{i},\hat{V}_{i} = \mathtt{T-SVD}(A_{i}^{\top},\delta') \\ 12 \ | \ \underline{\hat{\mathbf{a}}}_{i} = \mathtt{reshape}(\hat{U}_{i}, [s_{i-1}, n_{i}, s_{i}]) \ \text{with } s_{i} \ \text{equal to the number} \\ \text{of columns of } \hat{U}_{i} \\ 13 \ | \ \underline{\mathbf{a}}_{i+1} = \mathbf{a}_{i+1} \times 1 (\hat{\Sigma}_{i} \hat{V}_{i}^{\top}) \\ 14 \ \mathbf{end} \\ 15 \ \underline{\hat{\mathbf{a}}}_{d} = \mathbf{a}_{d} \\ \mathbf{Output:} \ \underline{\hat{\mathbf{a}}}_{1},\ldots,\underline{\hat{\mathbf{a}}}_{d} \end{array}$$



# TT-GMRES vs relaxed TT-GMRES from [Dolgov 2013]

#### relaxed TT-GMRES

**TT-GMRES** 



- Rounding precision  $\delta$  constant
- Backward stable stopping criterion



- Rounding precision  $\delta$  increases with the iterations
- Stopping criterion based on the least square residual

## Preconditioner in TT-format

$$\mathbf{M} = \sum_{k=-M}^{M} c_k \exp(-t_k \Delta_1) \otimes \cdots \otimes \exp(-t_k \Delta_1)$$

from the approximation of inverse of  $\Delta_d$  [Hackbusch and Khoromskij 2006a,b]



(nnín -

## Preconditioner in TT-format

$$\mathbf{M} = \sum_{k=-M}^{M} c_k \exp(-t_k \Delta_1) \otimes \cdots \otimes \exp(-t_k \Delta_1)$$

from the approximation of inverse of  $\Delta_d$  [Hackbusch and Khoromskij 2006a,b]



#### Gram approach

Let  $A = [a_1, \ldots, a_m]$ , then we look for A = QR with  $Q^\top Q = \mathbb{I}_m$  compute the Gram matrix

$$A^{\top}A = (R^{\top}Q^{\top})QR = R^{\top}R$$

this is (almost) the **Cholesky** factorization of  $A^{\top}A$  that can be written as

$$A^{\top}A = R^{\top}R = LL^{\top}$$

with the Cholesky factor  $L = R^{\top}$  and then Q gets

$$Q = AR^{-1} = A(L^{\top})^{-1}$$



$$\begin{array}{c}
\overline{\mathcal{Q}, R = \operatorname{Gram}(\mathcal{A}, \delta)} \\
\hline \overline{\operatorname{Input:} \mathcal{A} = \{a_1, \dots, a_m\}, \ \delta \in \mathbb{R}_+} \\
1 \ \mathcal{A} = [a_1, \dots, a_d] \\
2 \ \mathcal{G} = \mathcal{A}^\top \mathcal{A} \\
3 \ \mathcal{L} = \operatorname{cholesky}(\mathcal{G}) \\
4 \ \mathcal{Q} = \mathcal{A}(\mathcal{L}^\top)^{-1} = [q_1, \dots, q_d] \\
5 \ \operatorname{for} \ i = 1, \dots, m \ \operatorname{do} \\
6 \ | \ q_i = \delta \operatorname{-storage}(q_i) \\
7 \ \operatorname{end} \\
Output: \ \mathcal{Q} = \{q_1, \dots, q_m\}, R
\end{array}$$

In TT-format the following modifications occur

- G(i, j) is the scalar product of **a**<sub>i</sub> and **a**<sub>j</sub>
- The inverse of L<sup>⊤</sup> is explicitly computed
- **q**<sub>i</sub> is constructed as a linear combination of A elements
- TT-rounding is used to compress at precision  $\delta$

|             | cost in fp operations | cost in TT-rounding |
|-------------|-----------------------|---------------------|
| Gram        | $O(2nm^2)$            | т                   |
| CGS         | $\mathcal{O}(2nm^2)$  | т                   |
| MGS         | $\mathcal{O}(2nm^2)$  | т                   |
| CGS2        | $\mathcal{O}(4nm^2)$  | 2 <i>m</i>          |
| MGS2        | $\mathcal{O}(4nm^2)$  | 2 <i>m</i>          |
| Householder | $O(2nm^2 - 2m^3/3)$   | 4 <i>m</i>          |

Ínría

1/1 — Numerical linear algebra and data analysis in tensor format — M. lannacito

-

# **TT-Subspace** iteration

# orthogonalization as x-axis # TT-rounding as x-axis



*Figure:* Residual envelope for m = 7 TT-eigenpairs of order d = 3 with mode size  $\mathbf{n} = [\mathbf{19}, \mathbf{24}, \mathbf{31}]$  and rounding precision  $\delta = 10^{-5}$ .



# **TT-Subspace iteration**

# orthogonalization as x-axis

# TT-rounding as x-axis



*Figure:* Residual envelope for m = 7 TT-eigenpairs of order d = 3 with mode size  $\mathbf{n} = [\mathbf{24}, \mathbf{24}, \mathbf{24}]$  and rounding precision  $\delta = 10^{-5}$ .



## CA inner product

Let A be a contingency table with relative frequencies, the row and  $a_R$  and column marginals  $a_C$  are

$$a_R(i) = \sum_{j=1}^n A(i,j)$$
 and  $a_C(j) = \sum_{i=1}^m A(i,j).$ 

 $\mathcal{S}'$  denotes the Euclidean space  $\mathbb{R}^{m\times n}$  with the inner product induced by  $D_R^{-1}$  and  $D_C^{-1}$  such that

$$D_R = \operatorname{diag}(\sqrt{a_R})$$
 and  $D_C = \operatorname{diag}(\sqrt{a_C})$ ,

 $\mathcal S$  denotes the Euclidean space  $\mathbb R^{m\times n}$  with the standard inner product

The two Euclidean spaces are isometric through  $\nu$  defined as

$$\nu: \mathcal{S}' \to \mathcal{S}$$
 such that  $\nu(A) = D_R^{-1}AD_C^{-1}$ 



# CA construction



Point cloud coordinates in  $\mathcal{S}'$ 

Point cloud coordinates in  ${\mathcal S}$ 

$$W_R = \hat{U}\Sigma = D_R U\Sigma \qquad \qquad Y_R = U\Sigma W_C = \hat{V}\Sigma = D_C V\Sigma \qquad \qquad Y_C = V\Sigma$$

Barycentric relation [Lebart, 1982]  $Z_R = D_R^{-2} A Z_C \Sigma^{-1}$  and  $Z_C = D_C^{-2} A^{\top} Z_R \Sigma^{-1}$ 

with  $Z_i = D_i^{-2} W_i$ 



## Barycentric relation in CA

$$Z_{R}(i,h) = \left(D_{R}^{-2}AZ_{C}\Sigma^{-1}\right)(i,h) = \frac{1}{\sigma_{h}}\sum_{j=1}^{n}\frac{A(i,j)}{a_{R}(i)}Z_{C}(j,h)$$
$$= \frac{1}{\sigma_{h}}\sum_{j=1}^{n}\rho_{i}(j)Z_{C}(j,h)$$

with  $\sigma_h$  the *h*-th singular value and  $\rho_i \in \mathbb{R}^m$  such that

$$\sum_{j=1}^{n} \rho_i(j) = \sum_{j=1}^{n} \frac{A(i,j)}{a_R(i)} = \frac{a_R(i)}{a_R(i)} = 1$$

## Geometrical meaning

The *h*-th Principal Coordinate of the *i*-th category of the row variable is the barycentre of the *h*-th Principal Coordinate of all the column variable categories

