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The context
Different disciplines as physics, computer science, chemistry... relay
on numerical simulations to study

• Stochastic equations
• Uncertainty quantification

problems
• Quantum and vibration

chemistry
• Optimization
• Machine learning

Usually studied with matrix linear algebra
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Tensors

+ Better representation of structured problems and data

- Curse of dimensionality
Over the years different approximation techniques were proposed

• Canonical Polyadic
• Tucker
• Hierarchical Tucker
• Tensor-Train

Figure: from [Bi et al. 2022]

These approximation techniques introduce compression errors, so
what are their effects inside classical algorithms?
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The addressed questions
What are the effects of tensor representation and

compression inside classical algorithms?

Numerical linear algebra

• How to relate and interpret
point clouds from tensor
data?

• Is it mathematically
meaningful to visualize
simultaneously more than
two point clouds?

• How to solve a high dimensional
linear system of equations,
represented by low rank tensors?

• How to construct an orthogonal
basis of a tensor subspace?

• What is the effect of tensor
compression on the final solution?

Data analysis
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Numerical linear algebra2 • The variable accuracy approach
• Generalized Minimal RESidual (GMRES)

> numerical results in matrix computation
> numerical results in Tensor-Train (TT)

format
• Orthogonalization kernels

> TT-algorithms
> numerical loss of orthogonality in TT-format



Maths vs computer science
Mathematical world
• π = 3.1415926535897932384626433...

• x = 0.1 and y = 0.2, then x + y = 0.3

Computer world
>>> π = 3.141592653589793

>>> x = 0.1 and y = 0.2, then x+y = 0.30000000000000004

?
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Representation and computational error
Denoting by u the unit roundoff of the working precision

Standard IEEE model [Higham 2002]

fl(x) = x(1 + ξ) [storage perturbation]

fl(x op y) = (x op y)(1 + ε) [computational perturbation]

with |ξ| ≤ u, |ε| ≤ u and op ∈ {+,−,×,÷}.

Example
Assuming to work in floating point 64, with u64 = 10−16

• π = 3.141592653589793 = π(1 + ξ) with |ξ| ≤ u64

• x = 0.1 and y = 0.2, then

x + y = 0.30000000000000004 = (0.2 + 0.1)(1 + ε)

with |ε| ≤ u64
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The variable accuracy approach

The storage precision and the computational one are decoupled

δ-componentwise storage

δ-storage(x) = x(1 + ξ)

with |ξ| ≤ δ with δ the storage
precision.

Standard IEEE model [Higham 2002]

fl(x op y) = (x op y)(1 + ε)

with |ε| ≤ u with u the computation
precision.

δ-storage

flδ(x op y) = δ-storage
(
fl(x op y)

)
= (x op y)(1 + ε+ ξ)

with |ε| ≤ u, |ξ| ≤ δ and op ∈ {+,−,×,÷}.
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Application of the variable accuracy approach I

Iterative solver
• Generalized Minimal

RESidual (GMRES)
in matrix and tensor format

Orthogonalization kernels
• Classical and Modified

Gram-Schmidt (CGS, MGS)
• Gram approach
• Householder transformation

only in tensor format
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Background on GMRES [Saad and Schultz 1986]

To solve Ax = b with initial guess x0 = 0, at the k-th iteration
GMRES minimizes the norm of residual

||rk || = min
x∈Kk (A,b)

||Ax − b||

in the Krylov space Kk(A, b) = span{b,Ab, . . . ,Ak−1b}

Practically, let Vk = [v1, . . . , vk ] such that

Kk(A, b) = span{v1, . . . , vk}

thanks to the Arnoldi relation

AVk = Vk+1Hk with V>k+1Vk+1 = Ik+1

Commonly Householder or Modified Gram-Schmidt algorithms are
used to construct Vk
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Backward error analysis [Wilkinson 1963]
Given the linear system Ax = b and a working precision u, then

(A, b)

(A, b)

(Ã, b̃)

x

xk

u

exact

forward
error

computed

exact

backward
error

data
space

solution
space

If the backward error

ηA,b(xk) =
‖Axk − b‖

||A||||xk ||+ ||b||
∼ O(u)

than the algorithm is backward stable
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GMRES backward stability
Denoting by u the unit roundoff of the working precision for
solving the linear system

Ax = b

then in [Drkosova, Greenbaum, Rozložńık, and Strakoš 1995] and
in [Paige, Rozložńık, and Strakoš 2006], it is proved that

ηA,b(xk) = O(u)

∥∥∥Ik − V>k Vk

∥∥∥ηA,b(xk) = O(u)

So, the backward error ηA,b is suggested as stopping criterion for
GMRES
For MGS-GMRES the backward stability holds if k ∈ N is such that

κ(Vk+1) >
4
3
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GMRES within standard IEEE model
32bit floating point arithmetic

0 5 10 15 20 25 30 35 40
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100

AM
,b

 = 1e-08
MGS-GMRES
H-GMRES

AM, b I VTV F
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Numerical experiments δ-componentwise storage

δ-componentwise storage
Any vector z ∈ Rn is replaced by z ∈ Rn such that

fl
(
z(i)

)
= z(i) such that |z(i)− z(i)|

|z(i)| ≤ δ.

fp32 computation fp64 computation
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100

AM
,b

 = 0.0001
MGS-GMRES
H-GMRES

AM, b I VTV F
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δ = 10−4
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δ-normwise storage model

Length n vectors are stored in compressed format with

δ-component storage
|z(i)− z(i)|
|z | ≤ δ.

Remark
[Drkosova, Greenbaum,
Rozložńık, and Strakoš 1995;
Paige, Rozložńık, and Strakoš
2006]

do
readily apply

δ-normwise storage
||z − z ||
||z || ≤ δ.

Remark
[Drkosova, Greenbaum,
Rozložńık, and Strakoš 1995;
Paige, Rozložńık, and Strakoš
2006]

do not
readily apply
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Numerical experiment comparison
δ-componentwise δ-normwise
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0 5 10 15 20 25 30

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

AM
,b

 = 1e-06
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 10

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

The δ-componentwise and δ-normwise perturbation lead to similar results.
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δ-normwise perturbation: practical cases

Practical cases where the variable accuracy approach with
normwise perturbation find an application

• Lossy compressor • Tensor problem
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Context

The problem{
L(u) = f in Ω

u = f0 in ∂Ω
for Ω ⊆ Rn1×···×nd .

(i , j)

0 1

1

∆x

∆y

discretization

Ax = b

where A : Rn1×···×nd → Rn1×···×nd is a multilinear operator and
b ∈ Rn1×···×nd a tensor.

• Curse of dimensionality • TT-formalism [Oseledets 2011]

17/42 — Numerical linear algebra and data analysis in tensor format — M. Iannacito



Tensor Network formalism

scalar

n

vector

n

m
matrix

m

p

n

order 3-tensor

The TT-vector x ∈ Rn1×···×nd becomes

n1

r1

n2

r2

ni−1

ri−1

ni

ri

ni+1

ri+1

nd−1

rd−1

nd

The TT-matrix A ∈ R(n1×m1)···×(nd×md ) becomes

n1

m1

n2

m2

ni−1

mi−1

ni

mi

ni+1

mi+1

nd−1

md−1

nd

md

r1 r2 ri−1 ri ri+1 rd−1

Summation and contraction increase the TT-rank ri values
TT-rounding [Oseledets 2011]
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Robustness of TT-GMRES

TT-rounding at precision δ
For every TT-vector
z ∈ Rn1×···×nd we compress it
getting z ∈ Rn1×···×nd such
that

‖z− z‖
‖z‖ ≤ δ.

0 20 40 60 80 100
iteration

10 7

10 5

10 3

10 1

AM
,b

Convergence history, N = 64
 = 1e-3
 = 1e-5
 = 1e-8

Convection-Diffusion problem{
−∆u + v · ∇u = 0
u{y=1} = 1

in Ω = [−1, 1]3
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Parameter dependent problem

Let the parametric convection-diffusion problem be{
−α∆u + v · ∇u = 0
u{y=1} = 1

in Ω = [−1, 1]d and α ∈ [1, 10]

Solve independently p tensor
linear systems of order d

Aαi xαi = bαi

∀αi ∈ {α1, . . . , αp}.

Solve once the tensor linear
system Ax = b of order (d + 1)

Aα1
. . .

Aαp


x[α1]

...
x[αp ]

 =

bαi
...

bαi



What is the numerical quality of x[αi ] slice of x solution of the
(d + 1) tensor linear system and by construction the solution of the

problem Aαi xαi = bαi ?
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Order d vs (d + 1) solution bounds

Let the backward error of the (d + 1) system Ax = b be

ηA,b(x) =
||b− Ax||

||A||||x||+ ||b|| .

Let Ai , bi be the multilinear operator and the right-hand side of
the parametric problem for the parameter value αi , then define

ηAi ,bi (x[i]) =
||bi − Aix[i]||

||Ai ||||x[i]||+ ||bi ||

with x[i] denotes the i-th slice of x on the parameter mode for
i ∈ {1, . . . p}. Then we prove that

ηA,b(x) ρi (x) ≥ ηAi ,bi (x[i]) where ρi (x) =
‖A‖‖x‖+

√p∥∥Aix[i]
∥∥+ 1

.
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Numerical experiments

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

AM
,b

all-in-1 scaled by  20
all-in-1 scaled by  5

all-in-1 scaled by  *

 20 = 10.0
 5 = 1.6238

Figure: 4-d Parametric convection diffusion ηAM,b for and n = 255, bound using
δ = ε = 10−5 and p = 20 uniformly logarithmically distributed parameter
values αi ∈ [1, 10]
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Numerical linear algebra summary I

• Backward stability of GMRES holds numerically when data
are stored with
> componentwise perturbations
> normwise perturbations

both have practical implementations

• GMRES in TT-format with TT-rounding seems to be
backward stable

• Parameter dependent TT-problems of order d can be solved
at once through an order (d + 1) problem, guaranteeing
backward stable bounds linking the (d + 1) and d solutions

• Loss of orthogonality bounds for six widely used
orthogonalization kernels appears to hold true when
generalized to TT-format with normwise perturbation
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Application of the variable accuracy approach II

Iterative solver
• Generalized Minimal

RESidual (GMRES)
in matrix and tensor format

Orthogonalization kernels
• Classical and Modified

Gram-Schmidt (CGS, MGS)
• Gram approach
• Householder transformation

only in tensor format
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Classical and Modified Gram-Schmidt

Q,R = CGS(A, δ)

Input: A = [a1, . . . , am], δ ∈ R+

1 for i = 1, . . . ,m do
2 p = ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = 〈ai , qj〉
5 p = p − R(i , j)qj
6 end
7 p = δ-storage(p)
8 R(i , i) = ||p||
9 qi = 1/R(i , i) p

10 end
Output: Q = [q1, . . . , qm], R

Q,R = MGS(A, δ)

Input: A = [a1, . . . , am], δ ∈ R+

1 for i = 1, . . . ,m do
2 p = ai
3 for j = 1, . . . , i − 1 do
4 R(i , j) = 〈p, qj〉
5 p = p − R(i , j)qj
6 end
7 p = δ-storage(p)
8 R(i , i) = ||p||
9 qi = 1/R(i , i) p

10 end
Output: Q = [q1, . . . , qm], R

They readily write in TT-format.
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Householder transformation

Given a vector x ∈ Rn and a direction y ∈ Rn, the Householder
reflector H reflects x along y , i.e.,

Hx = ||x ||y with ||y || = 1.

Thanks to its properties, H writes as

H = In −
2
||u||2 u ⊗ u with u = (x − ||x ||y).

The practical implementation of the Householder transformation
kernel uses the components of the input vectors.

Remark
The Householder algorithm does not readily apply to tensor in
TT-formats, because of the compressed nature of this format.
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Loss Of Orthogonality
Let Qk = [q1, . . . , qk ] be the orthogonal basis produced by an
orthogonalization kernel, then the Loss Of Orthogonality is

||Ik − Q>k Qk ||.

It measures the quality in terms of orthogonality of the computed
basis. It is linked with the linearly dependency of the input vectors
Ak = [a1, . . . , ak ], estimated through κ(Ak).

Matrix

Source Algorithm
∥∥Ik − Q>k Qk

∥∥
[Stathopoulos and Wu 2002] Gram O(uκ2(Ak))
[Giraud, Langou, and Rozložńık 2005] CGS O(uκ2(Ak))
[Björck 1967] MGS O(uκ(Ak))
[Giraud, Langou, and Rozložńık 2005] CGS2 O(u)
[Giraud, Langou, and Rozložńık 2005] MGS2 O(u)
[Wilkinson 1965] Householder O(u)
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Numerical experiments in TT-format

xk+1 = TT-rounding(∆dak , max rank = 1) with ak+1 =
1

‖xk+1‖
xk+1

Figure: Loss of orthogonality for m = 20
TT-vectors of order d = 3 and mode size
n = 15, rounding precision δ = 10−5
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Numerical experiments in TT-format
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Figure: Loss of orthogonality for m = 20
TT-vectors of order d = 3 and mode size
n = 15, rounding precision δ = 10−5

• Gram approach
• CGS
• κ2(Ak)

O(uκ2(Ak))
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Loss of orthogonality: matrix vs tensor

Matrix, theoretical TT-format, conjecture

Algorithm
∥∥Ik − Q>k Qk

∥∥ ∥∥Ik −Q>k Qk
∥∥

Gram O(uκ2(Ak)) O(δκ2(Ak))
CGS O(uκ2(Ak)) O(δκ2(Ak))
MGS O(uκ(Ak)) O(δκ(Ak))
CGS2 O(u) O(δ)
MGS2 O(u) O(δ)
Householder O(u) O(δ)
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Numerical linear algebra summary II

• Backward stability of GMRES holds numerically when data
are stored with
> componentwise perturbations
> normwise perturbations

both have practical implementations

• GMRES in TT-format with TT-rounding seems to be
backward stable

• Parameter dependent TT-problems of order d can be solved
at once through an order (d + 1) problem, guaranteeing
backward stable bounds linking the (d + 1) and d solutions
• Loss of orthogonality bounds for six widely used

orthogonalization kernels appears to hold true when
generalized to TT-format with normwise perturbation
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Data analysis3 • Background on Correspondence Analysis

• MultiWay Correspondence Analysis

• A study case: the Malabar dataset

Joint work with A. Franc



Malabar dataset [Auby et al. 2022]

d = 4 mode dataset

• 1st mode of Operational
Taxonomic Units (OTUs)
with size n1 = 3539

• 2nd mode of locations with
size n2 = 4, namely
Bouee13, Comprian,
Jacquets, Teychan

• 3rd mode of water column
position with size n3 = 2,
that are pelagic and benthic

• 4th mode of seasons with
size n4 = 4, that are spring,
summer, autumn and
winter

Figure: Aerial tour of the Arcachon
basin, France
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The addressed question
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MultiWay Correspondence Analysis

Is it mathematically meaningful to display point clouds
together?
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Correspondence Analysis

Correspondence Analysis (CA) is a Principal Component Analysis
(PCA) meant to investigate contingency tables through a specific
norm

A ∈ S ′ X ∈ S

ÛΣV̂> UΣV>

ν

change space with isometry

SVD

ν−1

back in the original space
CA

Geometrical meaning
The h-th Principal Coordinate of the i-th category of the row
variable is the barycentre of the h-th Principal Coordinate of all the
column variable categories
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MultiWay Correspondence Analysis

MWCA is a Principal Components Analysis of a multiway table
with a specific norm

A ∈ S ′ X ∈ S

(Û1, Û2, Û3)C (U1,U2,U3)C

ν

change space with isometry

HOSVD

ν−1

back in the original space

MWCA
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Tucker model
Let A ∈ Rn1×n2×n3 be an order 3 tensor, then

Tucker format [Tucker 1963]

A =

r1,...,rd∑
α,β,γ=1

C(α, β, γ)u(1)
α ⊗ u(2)

β ⊗ u(3)
γ

where C is the core tensor, Uk = [u(k)
1 , . . . , u(k)

rk ] is an orthogonal
(nk × rk) matrix with rk = rank(A(k)). More compactly

A = (U1,U2,U3)C

Tucker decomposition can be computed through the
HOSVD [De Lathauwer, De Moor, and Vandewalle 2000], that
performs a SVD for each matricization

A(k) = UkΣkV>k
and the core tensor is obtained projecting the tensor A in the new
basis, i.e., C = (U>1 ,U>2 ,U>3 )A
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MWCA inner product

Let A be a relative frequencies multiway contingency table, the 1st
mode marginal is a1 ∈ Rn1 such that

a1(i) =

n2,n3∑
j,k=1

A(i , j , k)

• S ′ denotes the Euclidean space Rn1×n2×n3 with the inner
product induced by (D−1

1 ,D−1
2 ,D−1

3 ), with Dk = diag(
√ak)

• S denotes the Euclidean space Rn1×n2×n3 with the standard
inner product.

The two Euclidean spaces are isometric through ν defined as

ν : S ′ → S such that ν(A) = (D−1
1 ,D−1

2 ,D−1
3 )A
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MWCA scheme

A ∈ S ′ X ∈ S

(Û1, Û2, Û3)C (U1,U2,U3)C

ν

change space with isometry

HOSVD

ν−1

back in the original space

MWCA

Point cloud coordinates in S ′

Wk = ÛkΣk = DkUkΣk

Point cloud coordinates in S

Yk = UkΣk

where Σk are the singular values of X(k)
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MWCA barycentric relation

If Z1 = D−2
1 W1, then

Barycentric relation

Z1 = D−2
1 A(1)(Z3 ⊗K Z2)(Σ−1

1 B(1)
1 )>

where
B1 = (Ik ,Σ

−1
2 ,Σ−1

3 )C

with C the core tensor of X = ν(A)

Geometrical meaning
The hi -th Principal Coordinate of the i-th category of the 1st
variable is the barycentre of a linear combination of the h-th
Principal Coordinate of all the other two variable categories and
coefficients expressed by B1 entries
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MWCA on Malabar dataset
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• Orthogonality among water
column positions

• Distribution of OTU along
their directions
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MWCA on Malabar dataset
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MWCA on Malabar dataset

• Water column positions still
orthogonal, less
determinant

• OTU distribution affected
by seasons and locations
too

• Locations and seasons are
clustered

• Correlation between
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Data analysis summary

• MultiWay Correspondence Analysis has a geometric nature as
Correspondence Analysis

• The barycentric relation characterizing CA holds also for
MWCA

• MWCA highlights inter-variable interactions

• CA appears more suitable for studying combinations of
categories from different variables
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Conclusion &
perspectives4



Main contribution

• Variable accuracy approach for GMRES with componentwise
and normwise δ-storage perturbations

[Inria RR-9483], joint work with E. Agullo, O. Coulaud,
L. Giraud, G. Marait and N. Schenkels

• GMRES in TT-format and parameter dependent bounds

[Inria RR-9484], joint work with O. Coulaud and L. Giraud

• Numerical study of the loss of orthogonality for six widely
used orthogonalization kernels in TT-format

[Inria RR-9491], joint work with O. Coulaud and L. Giraud

• MultiWay Correspondence Analysis with the Malabar dataset
study case

[Inria RR-9429], joint work with O. Coulaud and A. Franc
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Perspectives

• Numerical linear algebra
> Theoretical proof for the normwise δ-storage (for future

work)
> Implementation of TT-GMRES with the Householder

kernel
> Study of preconditioner for the tensor case

• Data analysis
> Statistical interpretation of MultiWay Correspondence

Analysis results
> Combination of isometry and Canonical Polyadic

decomposition
> New visualization techniques
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Thanks for the attention.

Questions?



Alternative backward stable stopping criterion
Definition of normwise backward error

ηA,b(xk) = min
∆A,∆b

{
τ > 0 : ||∆A|| ≤ τ ||A||, ||∆b|| ≤ τ ||b|| and

(A + ∆A)xk = b + ∆
}

=
||Axk − b||

||A||||xk ||+ ||b||

If M is a preconditioner, the previous stopping criterion gets

ηAM,b(tk) =
||AMtk − b||

||AM||||tk ||+ ||b||
and xk = Mtk .

Another possible one based just on the right-hand side is

ηb(xk) = min
∆A,∆b

{τ > 0 : ||∆b|| ≤ τ ||b|| and Axk = b + ∆b}

=
||Axk − b||
||b|| .



TT-rounding [Oseledets 2011]
â1, . . . , âd = TT-rounding

(
(a1, . . . , ad ), δ

)
Input: ai ∈ Rri−1×ni×ri for every i ∈ {1, . . . , d}, δ ∈ R+

1 δ′ = δ√
d−1‖a‖

2 for i = d , . . . , 2 do
3 Ai = matricize(ai , mode = 1)

4 Qi ,R = QR(A>i )

5 ai = reshape(Q>i , [ri−1, ni , ri ])

6 ai−1 = ai−1 ×3 R>
7 end
8 s0 = 1
9 for i = 1, . . . , d − 1 do

10 Ai = matricize(ai , mode = 3)

11 Ûi , Σ̂i , V̂i = T-SVD(A>i , δ′)
12 âi = reshape(Ûi , [si−1, ni , si ]) with si equal to the number

of columns of Ûi
13 ai+1 = ai+1 ×1 (Σ̂i V̂>i )

14 end
15 âd = ad

Output: â1, . . . , âd



TT-GMRES vs relaxed TT-GMRES from [Dolgov 2013]
TT-GMRES relaxed TT-GMRES
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• Rounding precision δ constant
• Backward stable stopping

criterion

• Rounding precision δ increases
with the iterations

• Stopping criterion based on the
least square residual



Preconditioner in TT-format

M =
M∑

k=−M
ck exp(−tk∆1)⊗ · · · ⊗ exp(−tk∆1)

from the approximation of inverse of ∆d [Hackbusch and
Khoromskij 2006a,b]
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Preconditioner in TT-format

M =
M∑

k=−M
ck exp(−tk∆1)⊗ · · · ⊗ exp(−tk∆1)

from the approximation of inverse of ∆d [Hackbusch and
Khoromskij 2006a,b]
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Gram approach

Let A = [a1, . . . , am], then we look for A = QR with Q>Q = Im
compute the Gram matrix

A>A = (R>Q>)QR = R>R

this is (almost) the Cholesky factorization of A>A that can be
written as

A>A = R>R = LL>

with the Cholesky factor L = R> and then Q gets

Q = AR−1 = A(L>)−1



Gram approach

Let A = [a1, . . . , am], then we look for A = QR with Q>Q = Im
compute the Gram matrix

A>A = (R>Q>)QR = R>R

this is (almost) the Cholesky factorization of A>A that can be
written as

A>A = R>R = LL>

with the Cholesky factor L = R> and then Q gets

Q = AR−1 = A(L>)−1

Q,R = Gram(A, δ)

Input: A = {a1, . . . , am}, δ ∈ R+

1 A = [a1, . . . , ad ]

2 G = A>A
3 L = cholesky(G)

4 Q = A(L>)−1 = [q1, . . . , qd ]
5 for i = 1, . . . ,m do
6 qi = δ-storage(qi )
7 end

Output: Q = {q1, . . . , qm}, R

In TT-format the following
modifications occur
• G(i , j) is the scalar product

of ai and aj

• The inverse of L> is
explicitly computed
• qi is constructed as a linear

combination of A elements
• TT-rounding is used to

compress at precision δ



Computational costs: matrix vs tensor

cost in fp operations cost in TT-rounding

Gram O(2nm2) m
CGS O(2nm2) m
MGS O(2nm2) m
CGS2 O(4nm2) 2m
MGS2 O(4nm2) 2m
Householder O(2nm2 − 2m3/3) 4m
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TT-Subspace iteration
# orthogonalization as x -axis # TT-rounding as x -axis
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Figure: Residual envelope for m = 7 TT-eigenpairs of order d = 3 with mode
size n = [19, 24, 31] and rounding precision δ = 10−5.
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Figure: Residual envelope for m = 7 TT-eigenpairs of order d = 3 with mode
size n = [24, 24, 24] and rounding precision δ = 10−5.



CA inner product
Let A be a contingency table with relative frequencies, the row and
aR and column marginals aC are

aR(i) =
n∑

j=1
A(i , j) and aC (j) =

m∑
i=1

A(i , j).

S ′ denotes the Euclidean space Rm×n with the inner product
induced by D−1

R and D−1
C such that

DR = diag(
√aR) and DC = diag(

√aC ),

S denotes the Euclidean space Rm×n with the standard inner
product

The two Euclidean spaces are isometric through ν defined as

ν : S ′ → S such that ν(A) = D−1
R AD−1

C



CA construction
A ∈ S ′ X ∈ S

ÛΣV̂> UΣV>

ν

change space with isometry

SVD

ν−1

back in the original space
CA

Point cloud coordinates in S ′

WR = ÛΣ = DRUΣ

WC = V̂ Σ = DC V Σ

Point cloud coordinates in S

YR = UΣ

YC = V Σ

Barycentric relation [Lebart, 1982]

ZR = D−2
R AZC Σ−1 and ZC = D−2

C A>ZRΣ−1

with Zi = D−2
i Wi



Barycentric relation in CA

ZR(i , h) =
(
D−2

R AZC Σ−1)(i , h) =
1
σh

n∑
j=1

A(i , j)
aR(i) ZC (j , h)

=
1
σh

n∑
j=1

ρi (j)ZC (j , h)

with σh the h-th singular value and ρi ∈ Rm such that
n∑

j=1
ρi (j) =

n∑
j=1

A(i , j)
aR(i) =

aR(i)
aR(i) = 1

Geometrical meaning
The h-th Principal Coordinate of the i-th category of the row
variable is the barycentre of the h-th Principal Coordinate of all the
column variable categories
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